Broadband microwave antenna for uniform manipulation of millimeter-scale volumes of diamond quantum sensors

Quantum sensors based on nitrogen-vacancy (NV) centers in diamond are expected to demonstrate a wide variety of applications. For high-sensitivity quantum sensors with NV center ensembles, uniform manipulation of the electron spins of the NV centers in large volumes is required. In addition, a broad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2022-12, Vol.132 (22)
Hauptverfasser: Takemura, Y., Hayashi, K., Yoshii, Y., Saito, M., Onoda, S., Abe, H., Ohshima, T., Taniguchi, T., Fujiwara, M., Morishita, H., Ohki, I., Mizuochi, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum sensors based on nitrogen-vacancy (NV) centers in diamond are expected to demonstrate a wide variety of applications. For high-sensitivity quantum sensors with NV center ensembles, uniform manipulation of the electron spins of the NV centers in large volumes is required. In addition, a broad microwave frequency bandwidth for manipulating the NV centers' electron spin is necessary for vector magnetometry and measurement under a finite static magnetic field. Here, we demonstrate a broadband microwave antenna for uniform manipulation of millimeter-scale volumes of diamond quantum sensors. The simulation shows that the current is distributed at both edges of the loop coil of a single copper plate due to the skin effect. The loop coil acts like a Helmholtz coil, which realizes uniformity in the z-direction of the microwave magnetic field (B1). The plate structure has a higher mechanical stability, durability, and a larger heat capacity than the Helmholtz coil, due to its large volume. The antenna achieves a higher performance than previously reported antennae, with a maximal B1 of 4.5 G, a broad bandwidth of 287 ± 6 MHz, and a peak-to-peak variation of 9.2 % over a 3.1 mm3 cylinder volume. These performances show that the presented antenna is suitable for manipulating solid-state spin ensembles for high-sensitivity quantum sensors.
ISSN:0021-8979
1089-7550
DOI:10.1063/5.0128406