Comparison of pyrus fruit classification using K-Nearest Neighbor (KNN) and Adaptive Neuro Fuzzy Inference System (ANFIS) algorithms

Pears or Pyrus fruits are popular among the public because of their high nutritional content, delicious taste and low calories. Fruit classification can be done visually, but manual classification requires consistent techniques and is often constrained by human aspects. Digital image processing is a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hasanah, Riyan Latifahul, Indarti, Laraswati, Dewi, Marlina, Priadi, Agus
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2714
creator Hasanah, Riyan Latifahul
Indarti
Laraswati, Dewi
Marlina
Priadi, Agus
description Pears or Pyrus fruits are popular among the public because of their high nutritional content, delicious taste and low calories. Fruit classification can be done visually, but manual classification requires consistent techniques and is often constrained by human aspects. Digital image processing is applied to solve the above problems. The pears identified in this study came from three types, namely the Abate Pear, the Monster Pear and the William Pear. Pre-processing is done by converting the RGB image to L*a*b, then segmenting it using the K-Means Clustering algorithm. The segmented image is extracted into 7 features, namely 6 color features (Red, Green, Blue, Hue, Saturation, Value) and 1 size feature (Area). Classification is carried out using the K-Nearest Neighbor (KNN) algorithm and the Adaptive Neuro Fuzzy Inference System (ANFIS). The results showed that the KNN algorithm had a better performance in classifying the types of pears.
doi_str_mv 10.1063/5.0128365
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0128365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811320451</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-88bfedee7ae0093536d677044bd42a837d7d24c44f19f7abb4b8316852cd7a613</originalsourceid><addsrcrecordid>eNp9kMFLwzAYxYMoOKcH_4OAlyl0Jk2aZMcxnI6NepiCt5I2yZaxNTVpB93ZP9zOCd48fYf3e-_jPQBuMRpixMhjMkQ4FoQlZ6CHkwRHnGF2DnoIjWgUU_JxCa5C2CAUjzgXPfA1cbtKehtcCZ2BVeubAI1vbA2LrQzBGlvI2nZqE2y5gvMo1dLrUMNU29U6dx4O5ml6D2Wp4FjJqrZ73WmNd3DaHA4tnJVGe10WGi7bUOsdHIzT6WzZObYr52293oVrcGHkNuib39sH79Ont8lLtHh9nk3Gi6jCTNSRELnRSmsudVeHJIQpxjmiNFc0loJwxVVMC0oNHhku85zmgnTOJC4UlwyTPrg75VbefTZdiWzjGl92L7NYYExiRJMj9XCiQmHrn-5Z5e1O-jbDKDuunCXZ78r_wXvn_8CsUoZ8A28YffQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2811320451</pqid></control><display><type>conference_proceeding</type><title>Comparison of pyrus fruit classification using K-Nearest Neighbor (KNN) and Adaptive Neuro Fuzzy Inference System (ANFIS) algorithms</title><source>AIP Journals Complete</source><creator>Hasanah, Riyan Latifahul ; Indarti ; Laraswati, Dewi ; Marlina ; Priadi, Agus</creator><contributor>Junaidi, Agus ; Agustiani, Sarifah ; Arifin, Yoseph Tajul ; Baidawi, Taufik ; Dalis, Sopiyan ; Haryani ; Hastuti, Dwi Puji</contributor><creatorcontrib>Hasanah, Riyan Latifahul ; Indarti ; Laraswati, Dewi ; Marlina ; Priadi, Agus ; Junaidi, Agus ; Agustiani, Sarifah ; Arifin, Yoseph Tajul ; Baidawi, Taufik ; Dalis, Sopiyan ; Haryani ; Hastuti, Dwi Puji</creatorcontrib><description>Pears or Pyrus fruits are popular among the public because of their high nutritional content, delicious taste and low calories. Fruit classification can be done visually, but manual classification requires consistent techniques and is often constrained by human aspects. Digital image processing is applied to solve the above problems. The pears identified in this study came from three types, namely the Abate Pear, the Monster Pear and the William Pear. Pre-processing is done by converting the RGB image to L*a*b, then segmenting it using the K-Means Clustering algorithm. The segmented image is extracted into 7 features, namely 6 color features (Red, Green, Blue, Hue, Saturation, Value) and 1 size feature (Area). Classification is carried out using the K-Nearest Neighbor (KNN) algorithm and the Adaptive Neuro Fuzzy Inference System (ANFIS). The results showed that the KNN algorithm had a better performance in classifying the types of pears.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0128365</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Adaptive algorithms ; Adaptive systems ; Artificial neural networks ; Cluster analysis ; Clustering ; Digital imaging ; Fuzzy logic ; Image processing ; Inference ; K-nearest neighbors algorithm ; Pears ; Saturation (color) ; Vector quantization</subject><ispartof>AIP conference proceedings, 2023, Vol.2714 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0128365$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4511,23929,23930,25139,27923,27924,76255</link.rule.ids></links><search><contributor>Junaidi, Agus</contributor><contributor>Agustiani, Sarifah</contributor><contributor>Arifin, Yoseph Tajul</contributor><contributor>Baidawi, Taufik</contributor><contributor>Dalis, Sopiyan</contributor><contributor>Haryani</contributor><contributor>Hastuti, Dwi Puji</contributor><creatorcontrib>Hasanah, Riyan Latifahul</creatorcontrib><creatorcontrib>Indarti</creatorcontrib><creatorcontrib>Laraswati, Dewi</creatorcontrib><creatorcontrib>Marlina</creatorcontrib><creatorcontrib>Priadi, Agus</creatorcontrib><title>Comparison of pyrus fruit classification using K-Nearest Neighbor (KNN) and Adaptive Neuro Fuzzy Inference System (ANFIS) algorithms</title><title>AIP conference proceedings</title><description>Pears or Pyrus fruits are popular among the public because of their high nutritional content, delicious taste and low calories. Fruit classification can be done visually, but manual classification requires consistent techniques and is often constrained by human aspects. Digital image processing is applied to solve the above problems. The pears identified in this study came from three types, namely the Abate Pear, the Monster Pear and the William Pear. Pre-processing is done by converting the RGB image to L*a*b, then segmenting it using the K-Means Clustering algorithm. The segmented image is extracted into 7 features, namely 6 color features (Red, Green, Blue, Hue, Saturation, Value) and 1 size feature (Area). Classification is carried out using the K-Nearest Neighbor (KNN) algorithm and the Adaptive Neuro Fuzzy Inference System (ANFIS). The results showed that the KNN algorithm had a better performance in classifying the types of pears.</description><subject>Adaptive algorithms</subject><subject>Adaptive systems</subject><subject>Artificial neural networks</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Digital imaging</subject><subject>Fuzzy logic</subject><subject>Image processing</subject><subject>Inference</subject><subject>K-nearest neighbors algorithm</subject><subject>Pears</subject><subject>Saturation (color)</subject><subject>Vector quantization</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kMFLwzAYxYMoOKcH_4OAlyl0Jk2aZMcxnI6NepiCt5I2yZaxNTVpB93ZP9zOCd48fYf3e-_jPQBuMRpixMhjMkQ4FoQlZ6CHkwRHnGF2DnoIjWgUU_JxCa5C2CAUjzgXPfA1cbtKehtcCZ2BVeubAI1vbA2LrQzBGlvI2nZqE2y5gvMo1dLrUMNU29U6dx4O5ml6D2Wp4FjJqrZ73WmNd3DaHA4tnJVGe10WGi7bUOsdHIzT6WzZObYr52293oVrcGHkNuib39sH79Ont8lLtHh9nk3Gi6jCTNSRELnRSmsudVeHJIQpxjmiNFc0loJwxVVMC0oNHhku85zmgnTOJC4UlwyTPrg75VbefTZdiWzjGl92L7NYYExiRJMj9XCiQmHrn-5Z5e1O-jbDKDuunCXZ78r_wXvn_8CsUoZ8A28YffQ</recordid><startdate>20230509</startdate><enddate>20230509</enddate><creator>Hasanah, Riyan Latifahul</creator><creator>Indarti</creator><creator>Laraswati, Dewi</creator><creator>Marlina</creator><creator>Priadi, Agus</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230509</creationdate><title>Comparison of pyrus fruit classification using K-Nearest Neighbor (KNN) and Adaptive Neuro Fuzzy Inference System (ANFIS) algorithms</title><author>Hasanah, Riyan Latifahul ; Indarti ; Laraswati, Dewi ; Marlina ; Priadi, Agus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-88bfedee7ae0093536d677044bd42a837d7d24c44f19f7abb4b8316852cd7a613</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive systems</topic><topic>Artificial neural networks</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Digital imaging</topic><topic>Fuzzy logic</topic><topic>Image processing</topic><topic>Inference</topic><topic>K-nearest neighbors algorithm</topic><topic>Pears</topic><topic>Saturation (color)</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasanah, Riyan Latifahul</creatorcontrib><creatorcontrib>Indarti</creatorcontrib><creatorcontrib>Laraswati, Dewi</creatorcontrib><creatorcontrib>Marlina</creatorcontrib><creatorcontrib>Priadi, Agus</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasanah, Riyan Latifahul</au><au>Indarti</au><au>Laraswati, Dewi</au><au>Marlina</au><au>Priadi, Agus</au><au>Junaidi, Agus</au><au>Agustiani, Sarifah</au><au>Arifin, Yoseph Tajul</au><au>Baidawi, Taufik</au><au>Dalis, Sopiyan</au><au>Haryani</au><au>Hastuti, Dwi Puji</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Comparison of pyrus fruit classification using K-Nearest Neighbor (KNN) and Adaptive Neuro Fuzzy Inference System (ANFIS) algorithms</atitle><btitle>AIP conference proceedings</btitle><date>2023-05-09</date><risdate>2023</risdate><volume>2714</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Pears or Pyrus fruits are popular among the public because of their high nutritional content, delicious taste and low calories. Fruit classification can be done visually, but manual classification requires consistent techniques and is often constrained by human aspects. Digital image processing is applied to solve the above problems. The pears identified in this study came from three types, namely the Abate Pear, the Monster Pear and the William Pear. Pre-processing is done by converting the RGB image to L*a*b, then segmenting it using the K-Means Clustering algorithm. The segmented image is extracted into 7 features, namely 6 color features (Red, Green, Blue, Hue, Saturation, Value) and 1 size feature (Area). Classification is carried out using the K-Nearest Neighbor (KNN) algorithm and the Adaptive Neuro Fuzzy Inference System (ANFIS). The results showed that the KNN algorithm had a better performance in classifying the types of pears.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0128365</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2714 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0128365
source AIP Journals Complete
subjects Adaptive algorithms
Adaptive systems
Artificial neural networks
Cluster analysis
Clustering
Digital imaging
Fuzzy logic
Image processing
Inference
K-nearest neighbors algorithm
Pears
Saturation (color)
Vector quantization
title Comparison of pyrus fruit classification using K-Nearest Neighbor (KNN) and Adaptive Neuro Fuzzy Inference System (ANFIS) algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A33%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Comparison%20of%20pyrus%20fruit%20classification%20using%20K-Nearest%20Neighbor%20(KNN)%20and%20Adaptive%20Neuro%20Fuzzy%20Inference%20System%20(ANFIS)%20algorithms&rft.btitle=AIP%20conference%20proceedings&rft.au=Hasanah,%20Riyan%20Latifahul&rft.date=2023-05-09&rft.volume=2714&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0128365&rft_dat=%3Cproquest_scita%3E2811320451%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811320451&rft_id=info:pmid/&rfr_iscdi=true