The method of lines for solving equations of mathematical physics with boundary conditions of the first and third types

The article demonstrates the main aspects of the method of lines on the example of solving a one-dimensional parabolic equation. The transition to the grid functions is performed along the x coordinate when a boundary condition of the first type is imposed at the beginning of the segment, and a cond...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shaimov, K. M., Eshmurodov, M. Kh, Khujaev, I., Khujaev, Zh. I.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2612
creator Shaimov, K. M.
Eshmurodov, M. Kh
Khujaev, I.
Khujaev, Zh. I.
description The article demonstrates the main aspects of the method of lines on the example of solving a one-dimensional parabolic equation. The transition to the grid functions is performed along the x coordinate when a boundary condition of the first type is imposed at the beginning of the segment, and a condition of the third type is imposed at the end of it at x = l, according to the statements of the method of lines. The ways of searching for eigenvalues and vectors of a tridiagonal matrix at various values of the complex αl are shown. With them, the transition to autonomous ordinary differential equations relative to new grid functions is performed. The ordinary differential equations derived are solved numerically. Formulas for the forward transition from the original grid function to the new sought-for function and the inverse transition are given. Comparison with the discontinuous solution of the test problem showed good agreement. The results can be used to solve multidimensional parabolic equations and one-and multidimensional equations of elliptic and hyperbolic types if mixed boundary conditions hold at least one of the coordinates.
doi_str_mv 10.1063/5.0124614
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0124614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786994053</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2034-870bf61b148617e9f4fc08d0c7fb50d8ef1f1fd2b357b9c65f2be4f951639ea13</originalsourceid><addsrcrecordid>eNp9UU1LAzEQDaJgrR78BwFvwtZk87U5SvELCl4qeAu7m8RN2W62yW5L_72pLXqTgTcM894MbwaAW4xmGHHywGYI55RjegYmmDGcCY75OZggJGmWU_J5Ca5iXCGUSyGKCdgtGwPXZmi8ht7C1nUmQusDjL7duu4Lms1YDs538dBel0NjEri6bGHf7KOrI9y5oYGVHztdhj2sfafdryDRoXUhDrDsdKpcSLjvTbwGF7Zso7k55Sn4eH5azl-zxfvL2_xxkfU5IjQrBKosxxWmBcfCSEttjQqNamErhnRhLE6h84owUcmaM5tXhlrJMCfSlJhMwd1xbh_8ZjRxUCs_hi6tVLkouJQUMZJY90dWrN3wY1f1wa2TH7X1QTF1Oqrqtf2PjJE6fOFPQL4BVqB7Nw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2786994053</pqid></control><display><type>conference_proceeding</type><title>The method of lines for solving equations of mathematical physics with boundary conditions of the first and third types</title><source>AIP Journals Complete</source><creator>Shaimov, K. M. ; Eshmurodov, M. Kh ; Khujaev, I. ; Khujaev, Zh. I.</creator><contributor>Vatin, Nikolai ; Bazarov, Dilshod</contributor><creatorcontrib>Shaimov, K. M. ; Eshmurodov, M. Kh ; Khujaev, I. ; Khujaev, Zh. I. ; Vatin, Nikolai ; Bazarov, Dilshod</creatorcontrib><description>The article demonstrates the main aspects of the method of lines on the example of solving a one-dimensional parabolic equation. The transition to the grid functions is performed along the x coordinate when a boundary condition of the first type is imposed at the beginning of the segment, and a condition of the third type is imposed at the end of it at x = l, according to the statements of the method of lines. The ways of searching for eigenvalues and vectors of a tridiagonal matrix at various values of the complex αl are shown. With them, the transition to autonomous ordinary differential equations relative to new grid functions is performed. The ordinary differential equations derived are solved numerically. Formulas for the forward transition from the original grid function to the new sought-for function and the inverse transition are given. Comparison with the discontinuous solution of the test problem showed good agreement. The results can be used to solve multidimensional parabolic equations and one-and multidimensional equations of elliptic and hyperbolic types if mixed boundary conditions hold at least one of the coordinates.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0124614</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boundary conditions ; Differential equations ; Eigenvalues ; Elliptic functions ; Mathematical analysis ; Method of lines ; Ordinary differential equations ; Vectors (mathematics)</subject><ispartof>AIP conference proceedings, 2023, Vol.2612 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0124614$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Vatin, Nikolai</contributor><contributor>Bazarov, Dilshod</contributor><creatorcontrib>Shaimov, K. M.</creatorcontrib><creatorcontrib>Eshmurodov, M. Kh</creatorcontrib><creatorcontrib>Khujaev, I.</creatorcontrib><creatorcontrib>Khujaev, Zh. I.</creatorcontrib><title>The method of lines for solving equations of mathematical physics with boundary conditions of the first and third types</title><title>AIP conference proceedings</title><description>The article demonstrates the main aspects of the method of lines on the example of solving a one-dimensional parabolic equation. The transition to the grid functions is performed along the x coordinate when a boundary condition of the first type is imposed at the beginning of the segment, and a condition of the third type is imposed at the end of it at x = l, according to the statements of the method of lines. The ways of searching for eigenvalues and vectors of a tridiagonal matrix at various values of the complex αl are shown. With them, the transition to autonomous ordinary differential equations relative to new grid functions is performed. The ordinary differential equations derived are solved numerically. Formulas for the forward transition from the original grid function to the new sought-for function and the inverse transition are given. Comparison with the discontinuous solution of the test problem showed good agreement. The results can be used to solve multidimensional parabolic equations and one-and multidimensional equations of elliptic and hyperbolic types if mixed boundary conditions hold at least one of the coordinates.</description><subject>Boundary conditions</subject><subject>Differential equations</subject><subject>Eigenvalues</subject><subject>Elliptic functions</subject><subject>Mathematical analysis</subject><subject>Method of lines</subject><subject>Ordinary differential equations</subject><subject>Vectors (mathematics)</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9UU1LAzEQDaJgrR78BwFvwtZk87U5SvELCl4qeAu7m8RN2W62yW5L_72pLXqTgTcM894MbwaAW4xmGHHywGYI55RjegYmmDGcCY75OZggJGmWU_J5Ca5iXCGUSyGKCdgtGwPXZmi8ht7C1nUmQusDjL7duu4Lms1YDs538dBel0NjEri6bGHf7KOrI9y5oYGVHztdhj2sfafdryDRoXUhDrDsdKpcSLjvTbwGF7Zso7k55Sn4eH5azl-zxfvL2_xxkfU5IjQrBKosxxWmBcfCSEttjQqNamErhnRhLE6h84owUcmaM5tXhlrJMCfSlJhMwd1xbh_8ZjRxUCs_hi6tVLkouJQUMZJY90dWrN3wY1f1wa2TH7X1QTF1Oqrqtf2PjJE6fOFPQL4BVqB7Nw</recordid><startdate>20230315</startdate><enddate>20230315</enddate><creator>Shaimov, K. M.</creator><creator>Eshmurodov, M. Kh</creator><creator>Khujaev, I.</creator><creator>Khujaev, Zh. I.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230315</creationdate><title>The method of lines for solving equations of mathematical physics with boundary conditions of the first and third types</title><author>Shaimov, K. M. ; Eshmurodov, M. Kh ; Khujaev, I. ; Khujaev, Zh. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2034-870bf61b148617e9f4fc08d0c7fb50d8ef1f1fd2b357b9c65f2be4f951639ea13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundary conditions</topic><topic>Differential equations</topic><topic>Eigenvalues</topic><topic>Elliptic functions</topic><topic>Mathematical analysis</topic><topic>Method of lines</topic><topic>Ordinary differential equations</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaimov, K. M.</creatorcontrib><creatorcontrib>Eshmurodov, M. Kh</creatorcontrib><creatorcontrib>Khujaev, I.</creatorcontrib><creatorcontrib>Khujaev, Zh. I.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaimov, K. M.</au><au>Eshmurodov, M. Kh</au><au>Khujaev, I.</au><au>Khujaev, Zh. I.</au><au>Vatin, Nikolai</au><au>Bazarov, Dilshod</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The method of lines for solving equations of mathematical physics with boundary conditions of the first and third types</atitle><btitle>AIP conference proceedings</btitle><date>2023-03-15</date><risdate>2023</risdate><volume>2612</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The article demonstrates the main aspects of the method of lines on the example of solving a one-dimensional parabolic equation. The transition to the grid functions is performed along the x coordinate when a boundary condition of the first type is imposed at the beginning of the segment, and a condition of the third type is imposed at the end of it at x = l, according to the statements of the method of lines. The ways of searching for eigenvalues and vectors of a tridiagonal matrix at various values of the complex αl are shown. With them, the transition to autonomous ordinary differential equations relative to new grid functions is performed. The ordinary differential equations derived are solved numerically. Formulas for the forward transition from the original grid function to the new sought-for function and the inverse transition are given. Comparison with the discontinuous solution of the test problem showed good agreement. The results can be used to solve multidimensional parabolic equations and one-and multidimensional equations of elliptic and hyperbolic types if mixed boundary conditions hold at least one of the coordinates.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0124614</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2612 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0124614
source AIP Journals Complete
subjects Boundary conditions
Differential equations
Eigenvalues
Elliptic functions
Mathematical analysis
Method of lines
Ordinary differential equations
Vectors (mathematics)
title The method of lines for solving equations of mathematical physics with boundary conditions of the first and third types
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A56%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20method%20of%20lines%20for%20solving%20equations%20of%20mathematical%20physics%20with%20boundary%20conditions%20of%20the%20first%20and%20third%20types&rft.btitle=AIP%20conference%20proceedings&rft.au=Shaimov,%20K.%20M.&rft.date=2023-03-15&rft.volume=2612&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0124614&rft_dat=%3Cproquest_scita%3E2786994053%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786994053&rft_id=info:pmid/&rfr_iscdi=true