Nonvolatile flash memory device with ferroelectric blocking layer via in situ ALD process

To improve performances of nonvolatile charge trap flash memory devices, we propose an in situ Hf0.5Zr0.5O2 (HZO)/HfO2/Al2O3 stacked structure, which is compatible for Si with the metal–oxide–semiconductor (MOS) process based on all atomic layer deposition. Since the appropriate bandgap difference b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2023-07, Vol.123 (4)
Hauptverfasser: Kim, Dongsu, Song, Chong-Myeong, Heo, Su Jin, Pyo, Goeun, Kim, Dongha, Lee, Ji Hwan, Park, Kyung-Ho, Lee, Shinbuhm, Kwon, Hyuk-Jun, Jang, Jae Eun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Applied physics letters
container_volume 123
creator Kim, Dongsu
Song, Chong-Myeong
Heo, Su Jin
Pyo, Goeun
Kim, Dongha
Lee, Ji Hwan
Park, Kyung-Ho
Lee, Shinbuhm
Kwon, Hyuk-Jun
Jang, Jae Eun
description To improve performances of nonvolatile charge trap flash memory devices, we propose an in situ Hf0.5Zr0.5O2 (HZO)/HfO2/Al2O3 stacked structure, which is compatible for Si with the metal–oxide–semiconductor (MOS) process based on all atomic layer deposition. Since the appropriate bandgap difference between Al2O3 and HfO2, stable charge trap operation is achieved. High-quality ferroelectric HZO film characteristics were showed by minimizing defects and Si diffusion through the sub-layer of Al2O3/HfO2. Therefore, HZO as a blocking layer enhances the memory performance of the charge trap structure due to its specific polarization effect. The proposed device has the high polarization characteristics of HZO (2Pr > 20  μ C/cm2) along with a MOS-cap window (>4 V), good retention capability (>10 years), fast program/erase response operation times (105 cycles) while operating as a form of single level cell. By comparing Al2O3 and ferroelectric HZO as a blocking layer of the charge trap device, we confirmed that the HZO/HfO2/Al2O3 multi-layer structure had excellent characteristics according to various memory performance indicators. Our proposed high-performance charge trap flash memory can be employed in various applications, including Si-based three-dimensional structures with artificial intelligence systems.
doi_str_mv 10.1063/5.0123608
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0123608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841604296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-7f1982735f42dac5c8bccf2448f55623752ae1f455e28294c21e3536677d1f1c3</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKsL_0HAlcLU5GWSzCxL_YSiG124GtL0xaamk5pMK_33jrRrV5cLh3vhEHLJ2YgzJW7liHEQilVHZMCZ1oXgvDomA8aYKFQt-Sk5y3nZVwlCDMjHS2y3MZjOB6QumLygK1zFtKNz3HqL9Md3C-owpYgBbZe8pbMQ7ZdvP2kwO0x06w31Lc2-29Dx9I6uU7SY8zk5cSZkvDjkkLw_3L9Nnorp6-PzZDwtLNTQFdrxugItpCthbqy01cxaB2VZOSkVCC3BIHellAgV1KUFjkIKpbSec8etGJKr_W7_-73B3DXLuEltf9lAVXLFSqhVT13vKZtizglds05-ZdKu4az5M9fI5mCuZ2_2bLa-683E9h_4F4DtbKs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841604296</pqid></control><display><type>article</type><title>Nonvolatile flash memory device with ferroelectric blocking layer via in situ ALD process</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kim, Dongsu ; Song, Chong-Myeong ; Heo, Su Jin ; Pyo, Goeun ; Kim, Dongha ; Lee, Ji Hwan ; Park, Kyung-Ho ; Lee, Shinbuhm ; Kwon, Hyuk-Jun ; Jang, Jae Eun</creator><creatorcontrib>Kim, Dongsu ; Song, Chong-Myeong ; Heo, Su Jin ; Pyo, Goeun ; Kim, Dongha ; Lee, Ji Hwan ; Park, Kyung-Ho ; Lee, Shinbuhm ; Kwon, Hyuk-Jun ; Jang, Jae Eun</creatorcontrib><description>To improve performances of nonvolatile charge trap flash memory devices, we propose an in situ Hf0.5Zr0.5O2 (HZO)/HfO2/Al2O3 stacked structure, which is compatible for Si with the metal–oxide–semiconductor (MOS) process based on all atomic layer deposition. Since the appropriate bandgap difference between Al2O3 and HfO2, stable charge trap operation is achieved. High-quality ferroelectric HZO film characteristics were showed by minimizing defects and Si diffusion through the sub-layer of Al2O3/HfO2. Therefore, HZO as a blocking layer enhances the memory performance of the charge trap structure due to its specific polarization effect. The proposed device has the high polarization characteristics of HZO (2Pr &gt; 20  μ C/cm2) along with a MOS-cap window (&gt;4 V), good retention capability (&gt;10 years), fast program/erase response operation times (&lt;200  μ s), and strong durability (&gt;105 cycles) while operating as a form of single level cell. By comparing Al2O3 and ferroelectric HZO as a blocking layer of the charge trap device, we confirmed that the HZO/HfO2/Al2O3 multi-layer structure had excellent characteristics according to various memory performance indicators. Our proposed high-performance charge trap flash memory can be employed in various applications, including Si-based three-dimensional structures with artificial intelligence systems.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0123608</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aluminum oxide ; Applied physics ; Artificial intelligence ; Atomic layer epitaxy ; Diffusion barriers ; Diffusion layers ; Ferroelectric materials ; Ferroelectricity ; Flash memory (computers) ; Hafnium oxide ; Memory devices ; Metal oxide semiconductors ; Multilayers ; Polarization characteristics ; Silicon</subject><ispartof>Applied physics letters, 2023-07, Vol.123 (4)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-7f1982735f42dac5c8bccf2448f55623752ae1f455e28294c21e3536677d1f1c3</citedby><cites>FETCH-LOGICAL-c292t-7f1982735f42dac5c8bccf2448f55623752ae1f455e28294c21e3536677d1f1c3</cites><orcidid>0000-0002-4907-7362 ; 0000-0002-8523-1785 ; 0000-0002-1505-2597 ; 0000-0002-0307-9223 ; 0000-0002-0700-0455 ; 0000-0002-4767-7444 ; 0000-0002-7433-3604 ; 0000-0001-8376-9314 ; 0000-0002-7671-542X ; 0000-0002-6958-0838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0123608$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,4513,27928,27929,76388</link.rule.ids></links><search><creatorcontrib>Kim, Dongsu</creatorcontrib><creatorcontrib>Song, Chong-Myeong</creatorcontrib><creatorcontrib>Heo, Su Jin</creatorcontrib><creatorcontrib>Pyo, Goeun</creatorcontrib><creatorcontrib>Kim, Dongha</creatorcontrib><creatorcontrib>Lee, Ji Hwan</creatorcontrib><creatorcontrib>Park, Kyung-Ho</creatorcontrib><creatorcontrib>Lee, Shinbuhm</creatorcontrib><creatorcontrib>Kwon, Hyuk-Jun</creatorcontrib><creatorcontrib>Jang, Jae Eun</creatorcontrib><title>Nonvolatile flash memory device with ferroelectric blocking layer via in situ ALD process</title><title>Applied physics letters</title><description>To improve performances of nonvolatile charge trap flash memory devices, we propose an in situ Hf0.5Zr0.5O2 (HZO)/HfO2/Al2O3 stacked structure, which is compatible for Si with the metal–oxide–semiconductor (MOS) process based on all atomic layer deposition. Since the appropriate bandgap difference between Al2O3 and HfO2, stable charge trap operation is achieved. High-quality ferroelectric HZO film characteristics were showed by minimizing defects and Si diffusion through the sub-layer of Al2O3/HfO2. Therefore, HZO as a blocking layer enhances the memory performance of the charge trap structure due to its specific polarization effect. The proposed device has the high polarization characteristics of HZO (2Pr &gt; 20  μ C/cm2) along with a MOS-cap window (&gt;4 V), good retention capability (&gt;10 years), fast program/erase response operation times (&lt;200  μ s), and strong durability (&gt;105 cycles) while operating as a form of single level cell. By comparing Al2O3 and ferroelectric HZO as a blocking layer of the charge trap device, we confirmed that the HZO/HfO2/Al2O3 multi-layer structure had excellent characteristics according to various memory performance indicators. Our proposed high-performance charge trap flash memory can be employed in various applications, including Si-based three-dimensional structures with artificial intelligence systems.</description><subject>Aluminum oxide</subject><subject>Applied physics</subject><subject>Artificial intelligence</subject><subject>Atomic layer epitaxy</subject><subject>Diffusion barriers</subject><subject>Diffusion layers</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Flash memory (computers)</subject><subject>Hafnium oxide</subject><subject>Memory devices</subject><subject>Metal oxide semiconductors</subject><subject>Multilayers</subject><subject>Polarization characteristics</subject><subject>Silicon</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKsL_0HAlcLU5GWSzCxL_YSiG124GtL0xaamk5pMK_33jrRrV5cLh3vhEHLJ2YgzJW7liHEQilVHZMCZ1oXgvDomA8aYKFQt-Sk5y3nZVwlCDMjHS2y3MZjOB6QumLygK1zFtKNz3HqL9Md3C-owpYgBbZe8pbMQ7ZdvP2kwO0x06w31Lc2-29Dx9I6uU7SY8zk5cSZkvDjkkLw_3L9Nnorp6-PzZDwtLNTQFdrxugItpCthbqy01cxaB2VZOSkVCC3BIHellAgV1KUFjkIKpbSec8etGJKr_W7_-73B3DXLuEltf9lAVXLFSqhVT13vKZtizglds05-ZdKu4az5M9fI5mCuZ2_2bLa-683E9h_4F4DtbKs</recordid><startdate>20230724</startdate><enddate>20230724</enddate><creator>Kim, Dongsu</creator><creator>Song, Chong-Myeong</creator><creator>Heo, Su Jin</creator><creator>Pyo, Goeun</creator><creator>Kim, Dongha</creator><creator>Lee, Ji Hwan</creator><creator>Park, Kyung-Ho</creator><creator>Lee, Shinbuhm</creator><creator>Kwon, Hyuk-Jun</creator><creator>Jang, Jae Eun</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4907-7362</orcidid><orcidid>https://orcid.org/0000-0002-8523-1785</orcidid><orcidid>https://orcid.org/0000-0002-1505-2597</orcidid><orcidid>https://orcid.org/0000-0002-0307-9223</orcidid><orcidid>https://orcid.org/0000-0002-0700-0455</orcidid><orcidid>https://orcid.org/0000-0002-4767-7444</orcidid><orcidid>https://orcid.org/0000-0002-7433-3604</orcidid><orcidid>https://orcid.org/0000-0001-8376-9314</orcidid><orcidid>https://orcid.org/0000-0002-7671-542X</orcidid><orcidid>https://orcid.org/0000-0002-6958-0838</orcidid></search><sort><creationdate>20230724</creationdate><title>Nonvolatile flash memory device with ferroelectric blocking layer via in situ ALD process</title><author>Kim, Dongsu ; Song, Chong-Myeong ; Heo, Su Jin ; Pyo, Goeun ; Kim, Dongha ; Lee, Ji Hwan ; Park, Kyung-Ho ; Lee, Shinbuhm ; Kwon, Hyuk-Jun ; Jang, Jae Eun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-7f1982735f42dac5c8bccf2448f55623752ae1f455e28294c21e3536677d1f1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum oxide</topic><topic>Applied physics</topic><topic>Artificial intelligence</topic><topic>Atomic layer epitaxy</topic><topic>Diffusion barriers</topic><topic>Diffusion layers</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Flash memory (computers)</topic><topic>Hafnium oxide</topic><topic>Memory devices</topic><topic>Metal oxide semiconductors</topic><topic>Multilayers</topic><topic>Polarization characteristics</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Dongsu</creatorcontrib><creatorcontrib>Song, Chong-Myeong</creatorcontrib><creatorcontrib>Heo, Su Jin</creatorcontrib><creatorcontrib>Pyo, Goeun</creatorcontrib><creatorcontrib>Kim, Dongha</creatorcontrib><creatorcontrib>Lee, Ji Hwan</creatorcontrib><creatorcontrib>Park, Kyung-Ho</creatorcontrib><creatorcontrib>Lee, Shinbuhm</creatorcontrib><creatorcontrib>Kwon, Hyuk-Jun</creatorcontrib><creatorcontrib>Jang, Jae Eun</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Dongsu</au><au>Song, Chong-Myeong</au><au>Heo, Su Jin</au><au>Pyo, Goeun</au><au>Kim, Dongha</au><au>Lee, Ji Hwan</au><au>Park, Kyung-Ho</au><au>Lee, Shinbuhm</au><au>Kwon, Hyuk-Jun</au><au>Jang, Jae Eun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonvolatile flash memory device with ferroelectric blocking layer via in situ ALD process</atitle><jtitle>Applied physics letters</jtitle><date>2023-07-24</date><risdate>2023</risdate><volume>123</volume><issue>4</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>To improve performances of nonvolatile charge trap flash memory devices, we propose an in situ Hf0.5Zr0.5O2 (HZO)/HfO2/Al2O3 stacked structure, which is compatible for Si with the metal–oxide–semiconductor (MOS) process based on all atomic layer deposition. Since the appropriate bandgap difference between Al2O3 and HfO2, stable charge trap operation is achieved. High-quality ferroelectric HZO film characteristics were showed by minimizing defects and Si diffusion through the sub-layer of Al2O3/HfO2. Therefore, HZO as a blocking layer enhances the memory performance of the charge trap structure due to its specific polarization effect. The proposed device has the high polarization characteristics of HZO (2Pr &gt; 20  μ C/cm2) along with a MOS-cap window (&gt;4 V), good retention capability (&gt;10 years), fast program/erase response operation times (&lt;200  μ s), and strong durability (&gt;105 cycles) while operating as a form of single level cell. By comparing Al2O3 and ferroelectric HZO as a blocking layer of the charge trap device, we confirmed that the HZO/HfO2/Al2O3 multi-layer structure had excellent characteristics according to various memory performance indicators. Our proposed high-performance charge trap flash memory can be employed in various applications, including Si-based three-dimensional structures with artificial intelligence systems.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0123608</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4907-7362</orcidid><orcidid>https://orcid.org/0000-0002-8523-1785</orcidid><orcidid>https://orcid.org/0000-0002-1505-2597</orcidid><orcidid>https://orcid.org/0000-0002-0307-9223</orcidid><orcidid>https://orcid.org/0000-0002-0700-0455</orcidid><orcidid>https://orcid.org/0000-0002-4767-7444</orcidid><orcidid>https://orcid.org/0000-0002-7433-3604</orcidid><orcidid>https://orcid.org/0000-0001-8376-9314</orcidid><orcidid>https://orcid.org/0000-0002-7671-542X</orcidid><orcidid>https://orcid.org/0000-0002-6958-0838</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2023-07, Vol.123 (4)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_5_0123608
source AIP Journals Complete; Alma/SFX Local Collection
subjects Aluminum oxide
Applied physics
Artificial intelligence
Atomic layer epitaxy
Diffusion barriers
Diffusion layers
Ferroelectric materials
Ferroelectricity
Flash memory (computers)
Hafnium oxide
Memory devices
Metal oxide semiconductors
Multilayers
Polarization characteristics
Silicon
title Nonvolatile flash memory device with ferroelectric blocking layer via in situ ALD process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T15%3A47%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonvolatile%20flash%20memory%20device%20with%20ferroelectric%20blocking%20layer%20via%20in%20situ%20ALD%20process&rft.jtitle=Applied%20physics%20letters&rft.au=Kim,%20Dongsu&rft.date=2023-07-24&rft.volume=123&rft.issue=4&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0123608&rft_dat=%3Cproquest_scita%3E2841604296%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2841604296&rft_id=info:pmid/&rfr_iscdi=true