A new geometric method for constructing complete (k, n)-arcs in PG(3,11)

In this work, we construct a complete (k,n)-arcs in the projective space over Galois field GF(11), we construct the complete (k,n)-arcs by taking the union of some (k,n)-arcs, where 3 ≤ n ≤ 10, also, we construct the complete (k,n + 1)-arcs from the complete (k,n)-arcs, where 10 ≤ n ≤ 133 , by using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Khalaf, Hamid Mohamed, Yahya, Nada Yassen Kasm
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2394
creator Khalaf, Hamid Mohamed
Yahya, Nada Yassen Kasm
description In this work, we construct a complete (k,n)-arcs in the projective space over Galois field GF(11), we construct the complete (k,n)-arcs by taking the union of some (k,n)-arcs, where 3 ≤ n ≤ 10, also, we construct the complete (k,n + 1)-arcs from the complete (k,n)-arcs, where 10 ≤ n ≤ 133 , by using computer program A,B we added some points of index zero, and found all the complete (k,n)-arcs in PG(3,11), where 3 ≤ n ≤ 133. Moreover, we prove geometrically that the maximum complete (k,n)-arc in PG(3,11) is (1464,133)-arc.
doi_str_mv 10.1063/5.0121056
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0121056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2733669335</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2036-967696063d0a0173dec11d622b40741982cbae9a9aad28d369bf63ecf63416043</originalsourceid><addsrcrecordid>eNp9kEFLAzEUhIMoWKsH_0HASyvdmpfsJs1RirZCQQ8K3kKaZOvWNlmTVPHfu9KCNy9vePAxMwxCl0DGQDi7qcYEKJCKH6EeVBUUggM_Rj1CZFnQkr2eorOU1oRQKcSkh-a32LsvvHJh63JsDO7kLVhch4hN8CnHncmNX3XPtt247PDgfYT9sNDRJNx4_DQbsBHA8Byd1HqT3MVB--jl_u55Oi8Wj7OH6e2iaClhvJBccMm7ppZoAoJZZwAsp3RZElGCnFCz1E5qqbWlE8u4XNacOdOdEjgpWR9d7X3bGD52LmW1Drvou0hFBWOcS8aqjrreU8k0WecmeNXGZqvjtwKifpdSlTos9R_8GeIfqFpbsx8T_mWf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2733669335</pqid></control><display><type>conference_proceeding</type><title>A new geometric method for constructing complete (k, n)-arcs in PG(3,11)</title><source>AIP Journals Complete</source><creator>Khalaf, Hamid Mohamed ; Yahya, Nada Yassen Kasm</creator><contributor>Mohammed, Mohammed Ahmed</contributor><creatorcontrib>Khalaf, Hamid Mohamed ; Yahya, Nada Yassen Kasm ; Mohammed, Mohammed Ahmed</creatorcontrib><description>In this work, we construct a complete (k,n)-arcs in the projective space over Galois field GF(11), we construct the complete (k,n)-arcs by taking the union of some (k,n)-arcs, where 3 ≤ n ≤ 10, also, we construct the complete (k,n + 1)-arcs from the complete (k,n)-arcs, where 10 ≤ n ≤ 133 , by using computer program A,B we added some points of index zero, and found all the complete (k,n)-arcs in PG(3,11), where 3 ≤ n ≤ 133. Moreover, we prove geometrically that the maximum complete (k,n)-arc in PG(3,11) is (1464,133)-arc.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0121056</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><ispartof>AIP Conference Proceedings, 2022, Vol.2394 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0121056$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Mohammed, Mohammed Ahmed</contributor><creatorcontrib>Khalaf, Hamid Mohamed</creatorcontrib><creatorcontrib>Yahya, Nada Yassen Kasm</creatorcontrib><title>A new geometric method for constructing complete (k, n)-arcs in PG(3,11)</title><title>AIP Conference Proceedings</title><description>In this work, we construct a complete (k,n)-arcs in the projective space over Galois field GF(11), we construct the complete (k,n)-arcs by taking the union of some (k,n)-arcs, where 3 ≤ n ≤ 10, also, we construct the complete (k,n + 1)-arcs from the complete (k,n)-arcs, where 10 ≤ n ≤ 133 , by using computer program A,B we added some points of index zero, and found all the complete (k,n)-arcs in PG(3,11), where 3 ≤ n ≤ 133. Moreover, we prove geometrically that the maximum complete (k,n)-arc in PG(3,11) is (1464,133)-arc.</description><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEFLAzEUhIMoWKsH_0HASyvdmpfsJs1RirZCQQ8K3kKaZOvWNlmTVPHfu9KCNy9vePAxMwxCl0DGQDi7qcYEKJCKH6EeVBUUggM_Rj1CZFnQkr2eorOU1oRQKcSkh-a32LsvvHJh63JsDO7kLVhch4hN8CnHncmNX3XPtt247PDgfYT9sNDRJNx4_DQbsBHA8Byd1HqT3MVB--jl_u55Oi8Wj7OH6e2iaClhvJBccMm7ppZoAoJZZwAsp3RZElGCnFCz1E5qqbWlE8u4XNacOdOdEjgpWR9d7X3bGD52LmW1Drvou0hFBWOcS8aqjrreU8k0WecmeNXGZqvjtwKifpdSlTos9R_8GeIfqFpbsx8T_mWf</recordid><startdate>20221108</startdate><enddate>20221108</enddate><creator>Khalaf, Hamid Mohamed</creator><creator>Yahya, Nada Yassen Kasm</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20221108</creationdate><title>A new geometric method for constructing complete (k, n)-arcs in PG(3,11)</title><author>Khalaf, Hamid Mohamed ; Yahya, Nada Yassen Kasm</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2036-967696063d0a0173dec11d622b40741982cbae9a9aad28d369bf63ecf63416043</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khalaf, Hamid Mohamed</creatorcontrib><creatorcontrib>Yahya, Nada Yassen Kasm</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khalaf, Hamid Mohamed</au><au>Yahya, Nada Yassen Kasm</au><au>Mohammed, Mohammed Ahmed</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A new geometric method for constructing complete (k, n)-arcs in PG(3,11)</atitle><btitle>AIP Conference Proceedings</btitle><date>2022-11-08</date><risdate>2022</risdate><volume>2394</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this work, we construct a complete (k,n)-arcs in the projective space over Galois field GF(11), we construct the complete (k,n)-arcs by taking the union of some (k,n)-arcs, where 3 ≤ n ≤ 10, also, we construct the complete (k,n + 1)-arcs from the complete (k,n)-arcs, where 10 ≤ n ≤ 133 , by using computer program A,B we added some points of index zero, and found all the complete (k,n)-arcs in PG(3,11), where 3 ≤ n ≤ 133. Moreover, we prove geometrically that the maximum complete (k,n)-arc in PG(3,11) is (1464,133)-arc.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0121056</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2022, Vol.2394 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0121056
source AIP Journals Complete
title A new geometric method for constructing complete (k, n)-arcs in PG(3,11)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A08%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20new%20geometric%20method%20for%20constructing%20complete%20(k,%20n)-arcs%20in%20PG(3,11)&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Khalaf,%20Hamid%20Mohamed&rft.date=2022-11-08&rft.volume=2394&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0121056&rft_dat=%3Cproquest_scita%3E2733669335%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2733669335&rft_id=info:pmid/&rfr_iscdi=true