Experimental demonstration of >20 kJ laser energy coupling in 1-cm hydrocarbon-filled gas pipe targets via inverse Bremsstrahlung absorption with applications to MagLIF
Laser propagation experiments using four beams of the National Ignition Facility to deliver up to 35 kJ of laser energy at 351 nm laser wavelength to heat magnetized liner inertial fusion-scale (1 cm-long), hydrocarbon-filled gas pipe targets to ∼keV electron temperatures have demonstrated energy co...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2023-02, Vol.30 (2) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 30 |
creator | Pollock, B. B. Goyon, C. Sefkow, A. B. Glinsky, M. E. Peterson, K. J. Weis, M. R. Carroll, E. G. Fry, J. Piston, K. Harvey-Thompson, A. J. Hansen, S. B. Beckwith, K. Ampleford, D. J. Tubman, E. R. Strozzi, D. J. Ross, J. S. Moody, J. D. |
description | Laser propagation experiments using four beams of the National Ignition Facility to deliver up to 35 kJ of laser energy at 351 nm laser wavelength to heat magnetized liner inertial fusion-scale (1 cm-long), hydrocarbon-filled gas pipe targets to ∼keV electron temperatures have demonstrated energy coupling >20 kJ with essentially no backscatter in 15% critical electron density gas fills with 0–19 T applied axial magnetic fields. The energy coupling is also investigated for an electron density of 11.5% critical and for applied field strengths up to 24 T at both densities. This spans a range of Hall parameters 0
<
ω
c
e
τ
e
i
≲2, where a Hall parameter of 0.5 is expected to reduce electron thermal conduction across the field lines by a factor of 4–5 for the conditions of these experiments. At sufficiently high applied field strength (and therefore Hall parameter), the measured laser propagation speed through the targets increases in the measurements, consistent with reduced perpendicular electron thermal transport; this reduces the coupled energy to the target once the laser burns through the gas pipe. The results compare well with a 1D analytic propagation model for inverse Bremsstrahlung absorption. |
doi_str_mv | 10.1063/5.0120916 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0120916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2779527921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-a89bccc3f8e21b975a4faf5ee82a950a7aac15d555cf2ae2504592ca1c1b10e63</originalsourceid><addsrcrecordid>eNp90cFu1DAQBuAIgUQpHHiDEZxASrG9cRJfkKBqoWgRFyr1Zk2ccdYlawfbu-2-EY9JdreCAxIn-_Dp_8eeonjJ2Rln9eKdPGNcMMXrR8UJZ60qm7qpHu_vDSvrurp5WjxL6ZYxVtWyPSl-XdxPFN2afMYReloHn3LE7IKHYOG9YPDjC4yYKAJ5isMOTNhMo_MDOA-8NGtY7foYDMYu-NK6caQeBkwwuYkgYxwoJ9g6nP2WYiL4GGmd9i2rcTPHYJdCnA6Ndy6vAKc53hxGSJADfMVheXX5vHhicUz04uE8La4vL76ffy6X3z5dnX9YlmYhq1xiqzpjzMK2JHinGomVRSuJWoFKMmwQDZe9lNJYgSQkq6QSBrnhHWdUL06LV8fckLLTybhMZmWC92Sy5kq2datm9PqIphh-bihlfRs20c9zadE0SopGCT6rN0dlYkgpktXT_NMYd5ozvd-WlvphW7N9e7T7xsPb_-BtiH-hnnr7P_xv8m-v26ZK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779527921</pqid></control><display><type>article</type><title>Experimental demonstration of >20 kJ laser energy coupling in 1-cm hydrocarbon-filled gas pipe targets via inverse Bremsstrahlung absorption with applications to MagLIF</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Pollock, B. B. ; Goyon, C. ; Sefkow, A. B. ; Glinsky, M. E. ; Peterson, K. J. ; Weis, M. R. ; Carroll, E. G. ; Fry, J. ; Piston, K. ; Harvey-Thompson, A. J. ; Hansen, S. B. ; Beckwith, K. ; Ampleford, D. J. ; Tubman, E. R. ; Strozzi, D. J. ; Ross, J. S. ; Moody, J. D.</creator><creatorcontrib>Pollock, B. B. ; Goyon, C. ; Sefkow, A. B. ; Glinsky, M. E. ; Peterson, K. J. ; Weis, M. R. ; Carroll, E. G. ; Fry, J. ; Piston, K. ; Harvey-Thompson, A. J. ; Hansen, S. B. ; Beckwith, K. ; Ampleford, D. J. ; Tubman, E. R. ; Strozzi, D. J. ; Ross, J. S. ; Moody, J. D.</creatorcontrib><description>Laser propagation experiments using four beams of the National Ignition Facility to deliver up to 35 kJ of laser energy at 351 nm laser wavelength to heat magnetized liner inertial fusion-scale (1 cm-long), hydrocarbon-filled gas pipe targets to ∼keV electron temperatures have demonstrated energy coupling >20 kJ with essentially no backscatter in 15% critical electron density gas fills with 0–19 T applied axial magnetic fields. The energy coupling is also investigated for an electron density of 11.5% critical and for applied field strengths up to 24 T at both densities. This spans a range of Hall parameters 0
<
ω
c
e
τ
e
i
≲2, where a Hall parameter of 0.5 is expected to reduce electron thermal conduction across the field lines by a factor of 4–5 for the conditions of these experiments. At sufficiently high applied field strength (and therefore Hall parameter), the measured laser propagation speed through the targets increases in the measurements, consistent with reduced perpendicular electron thermal transport; this reduces the coupled energy to the target once the laser burns through the gas pipe. The results compare well with a 1D analytic propagation model for inverse Bremsstrahlung absorption.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0120916</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Absorption ; Backscattering ; Bremsstrahlung ; Coupling ; Electron density ; Field strength ; Gas pipes ; Hydrocarbons ; Inertial fusion (reactor) ; Lasers ; Parameters ; Plasma physics ; Propagation</subject><ispartof>Physics of plasmas, 2023-02, Vol.30 (2)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-a89bccc3f8e21b975a4faf5ee82a950a7aac15d555cf2ae2504592ca1c1b10e63</citedby><cites>FETCH-LOGICAL-c354t-a89bccc3f8e21b975a4faf5ee82a950a7aac15d555cf2ae2504592ca1c1b10e63</cites><orcidid>0000-0003-2269-7294 ; 0000-0002-8059-9871 ; 0000-0003-4519-5238 ; 0000-0002-3742-2421 ; 0000-0003-3132-0122 ; 0000-0003-3786-0912 ; 0000-0003-2493-3326 ; 0000-0002-1886-9770 ; 0000-0001-9519-0991 ; 0000-0001-6202-4292 ; 0000-0001-8814-3791 ; 0000-0003-0061-5323 ; 0000-0003-4534-0941 ; 0000-0003-4607-6310 ; 0000-0002-5610-8331 ; 0000000195190991 ; 0000000256108331 ; 0000000188143791 ; 0000000218869770 ; 0000000345195238 ; 0000000324933326 ; 0000000331320122 ; 0000000237422421 ; 0000000280599871 ; 0000000322697294 ; 0000000162024292 ; 0000000345340941 ; 0000000346076310 ; 0000000337860912 ; 0000000300615323</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0120916$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1958689$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pollock, B. B.</creatorcontrib><creatorcontrib>Goyon, C.</creatorcontrib><creatorcontrib>Sefkow, A. B.</creatorcontrib><creatorcontrib>Glinsky, M. E.</creatorcontrib><creatorcontrib>Peterson, K. J.</creatorcontrib><creatorcontrib>Weis, M. R.</creatorcontrib><creatorcontrib>Carroll, E. G.</creatorcontrib><creatorcontrib>Fry, J.</creatorcontrib><creatorcontrib>Piston, K.</creatorcontrib><creatorcontrib>Harvey-Thompson, A. J.</creatorcontrib><creatorcontrib>Hansen, S. B.</creatorcontrib><creatorcontrib>Beckwith, K.</creatorcontrib><creatorcontrib>Ampleford, D. J.</creatorcontrib><creatorcontrib>Tubman, E. R.</creatorcontrib><creatorcontrib>Strozzi, D. J.</creatorcontrib><creatorcontrib>Ross, J. S.</creatorcontrib><creatorcontrib>Moody, J. D.</creatorcontrib><title>Experimental demonstration of >20 kJ laser energy coupling in 1-cm hydrocarbon-filled gas pipe targets via inverse Bremsstrahlung absorption with applications to MagLIF</title><title>Physics of plasmas</title><description>Laser propagation experiments using four beams of the National Ignition Facility to deliver up to 35 kJ of laser energy at 351 nm laser wavelength to heat magnetized liner inertial fusion-scale (1 cm-long), hydrocarbon-filled gas pipe targets to ∼keV electron temperatures have demonstrated energy coupling >20 kJ with essentially no backscatter in 15% critical electron density gas fills with 0–19 T applied axial magnetic fields. The energy coupling is also investigated for an electron density of 11.5% critical and for applied field strengths up to 24 T at both densities. This spans a range of Hall parameters 0
<
ω
c
e
τ
e
i
≲2, where a Hall parameter of 0.5 is expected to reduce electron thermal conduction across the field lines by a factor of 4–5 for the conditions of these experiments. At sufficiently high applied field strength (and therefore Hall parameter), the measured laser propagation speed through the targets increases in the measurements, consistent with reduced perpendicular electron thermal transport; this reduces the coupled energy to the target once the laser burns through the gas pipe. The results compare well with a 1D analytic propagation model for inverse Bremsstrahlung absorption.</description><subject>Absorption</subject><subject>Backscattering</subject><subject>Bremsstrahlung</subject><subject>Coupling</subject><subject>Electron density</subject><subject>Field strength</subject><subject>Gas pipes</subject><subject>Hydrocarbons</subject><subject>Inertial fusion (reactor)</subject><subject>Lasers</subject><subject>Parameters</subject><subject>Plasma physics</subject><subject>Propagation</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90cFu1DAQBuAIgUQpHHiDEZxASrG9cRJfkKBqoWgRFyr1Zk2ccdYlawfbu-2-EY9JdreCAxIn-_Dp_8eeonjJ2Rln9eKdPGNcMMXrR8UJZ60qm7qpHu_vDSvrurp5WjxL6ZYxVtWyPSl-XdxPFN2afMYReloHn3LE7IKHYOG9YPDjC4yYKAJ5isMOTNhMo_MDOA-8NGtY7foYDMYu-NK6caQeBkwwuYkgYxwoJ9g6nP2WYiL4GGmd9i2rcTPHYJdCnA6Ndy6vAKc53hxGSJADfMVheXX5vHhicUz04uE8La4vL76ffy6X3z5dnX9YlmYhq1xiqzpjzMK2JHinGomVRSuJWoFKMmwQDZe9lNJYgSQkq6QSBrnhHWdUL06LV8fckLLTybhMZmWC92Sy5kq2datm9PqIphh-bihlfRs20c9zadE0SopGCT6rN0dlYkgpktXT_NMYd5ozvd-WlvphW7N9e7T7xsPb_-BtiH-hnnr7P_xv8m-v26ZK</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Pollock, B. B.</creator><creator>Goyon, C.</creator><creator>Sefkow, A. B.</creator><creator>Glinsky, M. E.</creator><creator>Peterson, K. J.</creator><creator>Weis, M. R.</creator><creator>Carroll, E. G.</creator><creator>Fry, J.</creator><creator>Piston, K.</creator><creator>Harvey-Thompson, A. J.</creator><creator>Hansen, S. B.</creator><creator>Beckwith, K.</creator><creator>Ampleford, D. J.</creator><creator>Tubman, E. R.</creator><creator>Strozzi, D. J.</creator><creator>Ross, J. S.</creator><creator>Moody, J. D.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2269-7294</orcidid><orcidid>https://orcid.org/0000-0002-8059-9871</orcidid><orcidid>https://orcid.org/0000-0003-4519-5238</orcidid><orcidid>https://orcid.org/0000-0002-3742-2421</orcidid><orcidid>https://orcid.org/0000-0003-3132-0122</orcidid><orcidid>https://orcid.org/0000-0003-3786-0912</orcidid><orcidid>https://orcid.org/0000-0003-2493-3326</orcidid><orcidid>https://orcid.org/0000-0002-1886-9770</orcidid><orcidid>https://orcid.org/0000-0001-9519-0991</orcidid><orcidid>https://orcid.org/0000-0001-6202-4292</orcidid><orcidid>https://orcid.org/0000-0001-8814-3791</orcidid><orcidid>https://orcid.org/0000-0003-0061-5323</orcidid><orcidid>https://orcid.org/0000-0003-4534-0941</orcidid><orcidid>https://orcid.org/0000-0003-4607-6310</orcidid><orcidid>https://orcid.org/0000-0002-5610-8331</orcidid><orcidid>https://orcid.org/0000000195190991</orcidid><orcidid>https://orcid.org/0000000256108331</orcidid><orcidid>https://orcid.org/0000000188143791</orcidid><orcidid>https://orcid.org/0000000218869770</orcidid><orcidid>https://orcid.org/0000000345195238</orcidid><orcidid>https://orcid.org/0000000324933326</orcidid><orcidid>https://orcid.org/0000000331320122</orcidid><orcidid>https://orcid.org/0000000237422421</orcidid><orcidid>https://orcid.org/0000000280599871</orcidid><orcidid>https://orcid.org/0000000322697294</orcidid><orcidid>https://orcid.org/0000000162024292</orcidid><orcidid>https://orcid.org/0000000345340941</orcidid><orcidid>https://orcid.org/0000000346076310</orcidid><orcidid>https://orcid.org/0000000337860912</orcidid><orcidid>https://orcid.org/0000000300615323</orcidid></search><sort><creationdate>202302</creationdate><title>Experimental demonstration of >20 kJ laser energy coupling in 1-cm hydrocarbon-filled gas pipe targets via inverse Bremsstrahlung absorption with applications to MagLIF</title><author>Pollock, B. B. ; Goyon, C. ; Sefkow, A. B. ; Glinsky, M. E. ; Peterson, K. J. ; Weis, M. R. ; Carroll, E. G. ; Fry, J. ; Piston, K. ; Harvey-Thompson, A. J. ; Hansen, S. B. ; Beckwith, K. ; Ampleford, D. J. ; Tubman, E. R. ; Strozzi, D. J. ; Ross, J. S. ; Moody, J. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-a89bccc3f8e21b975a4faf5ee82a950a7aac15d555cf2ae2504592ca1c1b10e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption</topic><topic>Backscattering</topic><topic>Bremsstrahlung</topic><topic>Coupling</topic><topic>Electron density</topic><topic>Field strength</topic><topic>Gas pipes</topic><topic>Hydrocarbons</topic><topic>Inertial fusion (reactor)</topic><topic>Lasers</topic><topic>Parameters</topic><topic>Plasma physics</topic><topic>Propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pollock, B. B.</creatorcontrib><creatorcontrib>Goyon, C.</creatorcontrib><creatorcontrib>Sefkow, A. B.</creatorcontrib><creatorcontrib>Glinsky, M. E.</creatorcontrib><creatorcontrib>Peterson, K. J.</creatorcontrib><creatorcontrib>Weis, M. R.</creatorcontrib><creatorcontrib>Carroll, E. G.</creatorcontrib><creatorcontrib>Fry, J.</creatorcontrib><creatorcontrib>Piston, K.</creatorcontrib><creatorcontrib>Harvey-Thompson, A. J.</creatorcontrib><creatorcontrib>Hansen, S. B.</creatorcontrib><creatorcontrib>Beckwith, K.</creatorcontrib><creatorcontrib>Ampleford, D. J.</creatorcontrib><creatorcontrib>Tubman, E. R.</creatorcontrib><creatorcontrib>Strozzi, D. J.</creatorcontrib><creatorcontrib>Ross, J. S.</creatorcontrib><creatorcontrib>Moody, J. D.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pollock, B. B.</au><au>Goyon, C.</au><au>Sefkow, A. B.</au><au>Glinsky, M. E.</au><au>Peterson, K. J.</au><au>Weis, M. R.</au><au>Carroll, E. G.</au><au>Fry, J.</au><au>Piston, K.</au><au>Harvey-Thompson, A. J.</au><au>Hansen, S. B.</au><au>Beckwith, K.</au><au>Ampleford, D. J.</au><au>Tubman, E. R.</au><au>Strozzi, D. J.</au><au>Ross, J. S.</au><au>Moody, J. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental demonstration of >20 kJ laser energy coupling in 1-cm hydrocarbon-filled gas pipe targets via inverse Bremsstrahlung absorption with applications to MagLIF</atitle><jtitle>Physics of plasmas</jtitle><date>2023-02</date><risdate>2023</risdate><volume>30</volume><issue>2</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Laser propagation experiments using four beams of the National Ignition Facility to deliver up to 35 kJ of laser energy at 351 nm laser wavelength to heat magnetized liner inertial fusion-scale (1 cm-long), hydrocarbon-filled gas pipe targets to ∼keV electron temperatures have demonstrated energy coupling >20 kJ with essentially no backscatter in 15% critical electron density gas fills with 0–19 T applied axial magnetic fields. The energy coupling is also investigated for an electron density of 11.5% critical and for applied field strengths up to 24 T at both densities. This spans a range of Hall parameters 0
<
ω
c
e
τ
e
i
≲2, where a Hall parameter of 0.5 is expected to reduce electron thermal conduction across the field lines by a factor of 4–5 for the conditions of these experiments. At sufficiently high applied field strength (and therefore Hall parameter), the measured laser propagation speed through the targets increases in the measurements, consistent with reduced perpendicular electron thermal transport; this reduces the coupled energy to the target once the laser burns through the gas pipe. The results compare well with a 1D analytic propagation model for inverse Bremsstrahlung absorption.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0120916</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2269-7294</orcidid><orcidid>https://orcid.org/0000-0002-8059-9871</orcidid><orcidid>https://orcid.org/0000-0003-4519-5238</orcidid><orcidid>https://orcid.org/0000-0002-3742-2421</orcidid><orcidid>https://orcid.org/0000-0003-3132-0122</orcidid><orcidid>https://orcid.org/0000-0003-3786-0912</orcidid><orcidid>https://orcid.org/0000-0003-2493-3326</orcidid><orcidid>https://orcid.org/0000-0002-1886-9770</orcidid><orcidid>https://orcid.org/0000-0001-9519-0991</orcidid><orcidid>https://orcid.org/0000-0001-6202-4292</orcidid><orcidid>https://orcid.org/0000-0001-8814-3791</orcidid><orcidid>https://orcid.org/0000-0003-0061-5323</orcidid><orcidid>https://orcid.org/0000-0003-4534-0941</orcidid><orcidid>https://orcid.org/0000-0003-4607-6310</orcidid><orcidid>https://orcid.org/0000-0002-5610-8331</orcidid><orcidid>https://orcid.org/0000000195190991</orcidid><orcidid>https://orcid.org/0000000256108331</orcidid><orcidid>https://orcid.org/0000000188143791</orcidid><orcidid>https://orcid.org/0000000218869770</orcidid><orcidid>https://orcid.org/0000000345195238</orcidid><orcidid>https://orcid.org/0000000324933326</orcidid><orcidid>https://orcid.org/0000000331320122</orcidid><orcidid>https://orcid.org/0000000237422421</orcidid><orcidid>https://orcid.org/0000000280599871</orcidid><orcidid>https://orcid.org/0000000322697294</orcidid><orcidid>https://orcid.org/0000000162024292</orcidid><orcidid>https://orcid.org/0000000345340941</orcidid><orcidid>https://orcid.org/0000000346076310</orcidid><orcidid>https://orcid.org/0000000337860912</orcidid><orcidid>https://orcid.org/0000000300615323</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2023-02, Vol.30 (2) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0120916 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Absorption Backscattering Bremsstrahlung Coupling Electron density Field strength Gas pipes Hydrocarbons Inertial fusion (reactor) Lasers Parameters Plasma physics Propagation |
title | Experimental demonstration of >20 kJ laser energy coupling in 1-cm hydrocarbon-filled gas pipe targets via inverse Bremsstrahlung absorption with applications to MagLIF |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A48%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20demonstration%20of%20%3E20%20kJ%20laser%20energy%20coupling%20in%201-cm%20hydrocarbon-filled%20gas%20pipe%20targets%20via%20inverse%20Bremsstrahlung%20absorption%20with%20applications%20to%20MagLIF&rft.jtitle=Physics%20of%20plasmas&rft.au=Pollock,%20B.%20B.&rft.date=2023-02&rft.volume=30&rft.issue=2&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0120916&rft_dat=%3Cproquest_scita%3E2779527921%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779527921&rft_id=info:pmid/&rfr_iscdi=true |