Bandgap prediction for a beam containing membrane-arch-mass resonators

This work aims to propose a promising locally resonating system consisting of a tensioned elastic membrane and two-arch masses attached on the membrane surface. Traditional membrane-type resonators, which usually create one obvious attenuation zone at low frequencies, might not be efficient in multi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2022-12, Vol.132 (24)
Hauptverfasser: Kao, De-Wei, Chen, Jung-San, Chen, Yu-Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page
container_title Journal of applied physics
container_volume 132
creator Kao, De-Wei
Chen, Jung-San
Chen, Yu-Bin
description This work aims to propose a promising locally resonating system consisting of a tensioned elastic membrane and two-arch masses attached on the membrane surface. Traditional membrane-type resonators, which usually create one obvious attenuation zone at low frequencies, might not be efficient in multi-frequency vibration suppression. The proposed structure can produce an extra clear flexural attenuation region and shift bandgap frequencies below 300 Hz. By adjusting geometric parameters (thickness, width, and location) of the arch mass, the bandgap region can be tuned. Introducing a feasible analytical model for accurately predicting the first and second initial frequencies of the bandgaps for a beam structure containing membrane-arch-mass resonators is another focus of this study. The proposed theoretical framework can be used to tune the bandgap to different target frequency ranges without knowing the actual width of the bandgap. Finite-element analysis and experiments are conducted to verify the theoretical predictions. A good agreement is seen among the theoretical, finite-element analysis, and experimental results. In addition, adjacent cells with different arch-mass distributions can generate two pairs of flexural bandgaps, increasing the practicality in engineering applications. The proposed structure might be used in low-frequency vibration isolation and filters.
doi_str_mv 10.1063/5.0118530
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0118530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758447070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-3190cecca2795e7d1c34f820270091d2427485635895921e02aeff98e95243d83</originalsourceid><addsrcrecordid>eNp90EFLAzEQBeAgCtbqwX-w4EkhdZJsmuSoxapQ8KLnMM0mdYubrMlW8N_bUtGD4GkuH-8xj5BzBhMGU3EtJ8CYlgIOyIiBNlRJCYdkBMAZ1UaZY3JSyhp2SpgRmd9ibFbYV332TeuGNsUqpFxhtfTYVS7FAdvYxlXV-W6ZMXqK2b3SDkupsi8p4pByOSVHAd-KP_u-Y_Iyv3uePdDF0_3j7GZBneBqoIIZcN455MpIrxrmRB00B64ADGt4zVWt5VRIbaThzANHH4LR3khei0aLMbnY5_Y5vW98Gew6bXLcVlqupK5rBQq26nKvXE6lZB9sn9sO86dlYHczWWm_Z9raq70trh1w9_8P_kj5F9q-Cf_hv8lfJSJ0BA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758447070</pqid></control><display><type>article</type><title>Bandgap prediction for a beam containing membrane-arch-mass resonators</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kao, De-Wei ; Chen, Jung-San ; Chen, Yu-Bin</creator><creatorcontrib>Kao, De-Wei ; Chen, Jung-San ; Chen, Yu-Bin</creatorcontrib><description>This work aims to propose a promising locally resonating system consisting of a tensioned elastic membrane and two-arch masses attached on the membrane surface. Traditional membrane-type resonators, which usually create one obvious attenuation zone at low frequencies, might not be efficient in multi-frequency vibration suppression. The proposed structure can produce an extra clear flexural attenuation region and shift bandgap frequencies below 300 Hz. By adjusting geometric parameters (thickness, width, and location) of the arch mass, the bandgap region can be tuned. Introducing a feasible analytical model for accurately predicting the first and second initial frequencies of the bandgaps for a beam structure containing membrane-arch-mass resonators is another focus of this study. The proposed theoretical framework can be used to tune the bandgap to different target frequency ranges without knowing the actual width of the bandgap. Finite-element analysis and experiments are conducted to verify the theoretical predictions. A good agreement is seen among the theoretical, finite-element analysis, and experimental results. In addition, adjacent cells with different arch-mass distributions can generate two pairs of flexural bandgaps, increasing the practicality in engineering applications. The proposed structure might be used in low-frequency vibration isolation and filters.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0118530</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Arches ; Attenuation ; Energy gap ; Finite element analysis ; Finite element method ; Frequency ranges ; Membranes ; Resonators ; Vibration analysis ; Vibration control</subject><ispartof>Journal of applied physics, 2022-12, Vol.132 (24)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-3190cecca2795e7d1c34f820270091d2427485635895921e02aeff98e95243d83</citedby><cites>FETCH-LOGICAL-c327t-3190cecca2795e7d1c34f820270091d2427485635895921e02aeff98e95243d83</cites><orcidid>0000-0001-5717-9951 ; 0000-0002-4302-266X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0118530$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Kao, De-Wei</creatorcontrib><creatorcontrib>Chen, Jung-San</creatorcontrib><creatorcontrib>Chen, Yu-Bin</creatorcontrib><title>Bandgap prediction for a beam containing membrane-arch-mass resonators</title><title>Journal of applied physics</title><description>This work aims to propose a promising locally resonating system consisting of a tensioned elastic membrane and two-arch masses attached on the membrane surface. Traditional membrane-type resonators, which usually create one obvious attenuation zone at low frequencies, might not be efficient in multi-frequency vibration suppression. The proposed structure can produce an extra clear flexural attenuation region and shift bandgap frequencies below 300 Hz. By adjusting geometric parameters (thickness, width, and location) of the arch mass, the bandgap region can be tuned. Introducing a feasible analytical model for accurately predicting the first and second initial frequencies of the bandgaps for a beam structure containing membrane-arch-mass resonators is another focus of this study. The proposed theoretical framework can be used to tune the bandgap to different target frequency ranges without knowing the actual width of the bandgap. Finite-element analysis and experiments are conducted to verify the theoretical predictions. A good agreement is seen among the theoretical, finite-element analysis, and experimental results. In addition, adjacent cells with different arch-mass distributions can generate two pairs of flexural bandgaps, increasing the practicality in engineering applications. The proposed structure might be used in low-frequency vibration isolation and filters.</description><subject>Applied physics</subject><subject>Arches</subject><subject>Attenuation</subject><subject>Energy gap</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Frequency ranges</subject><subject>Membranes</subject><subject>Resonators</subject><subject>Vibration analysis</subject><subject>Vibration control</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90EFLAzEQBeAgCtbqwX-w4EkhdZJsmuSoxapQ8KLnMM0mdYubrMlW8N_bUtGD4GkuH-8xj5BzBhMGU3EtJ8CYlgIOyIiBNlRJCYdkBMAZ1UaZY3JSyhp2SpgRmd9ibFbYV332TeuGNsUqpFxhtfTYVS7FAdvYxlXV-W6ZMXqK2b3SDkupsi8p4pByOSVHAd-KP_u-Y_Iyv3uePdDF0_3j7GZBneBqoIIZcN455MpIrxrmRB00B64ADGt4zVWt5VRIbaThzANHH4LR3khei0aLMbnY5_Y5vW98Gew6bXLcVlqupK5rBQq26nKvXE6lZB9sn9sO86dlYHczWWm_Z9raq70trh1w9_8P_kj5F9q-Cf_hv8lfJSJ0BA</recordid><startdate>20221228</startdate><enddate>20221228</enddate><creator>Kao, De-Wei</creator><creator>Chen, Jung-San</creator><creator>Chen, Yu-Bin</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5717-9951</orcidid><orcidid>https://orcid.org/0000-0002-4302-266X</orcidid></search><sort><creationdate>20221228</creationdate><title>Bandgap prediction for a beam containing membrane-arch-mass resonators</title><author>Kao, De-Wei ; Chen, Jung-San ; Chen, Yu-Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-3190cecca2795e7d1c34f820270091d2427485635895921e02aeff98e95243d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Arches</topic><topic>Attenuation</topic><topic>Energy gap</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Frequency ranges</topic><topic>Membranes</topic><topic>Resonators</topic><topic>Vibration analysis</topic><topic>Vibration control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kao, De-Wei</creatorcontrib><creatorcontrib>Chen, Jung-San</creatorcontrib><creatorcontrib>Chen, Yu-Bin</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kao, De-Wei</au><au>Chen, Jung-San</au><au>Chen, Yu-Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bandgap prediction for a beam containing membrane-arch-mass resonators</atitle><jtitle>Journal of applied physics</jtitle><date>2022-12-28</date><risdate>2022</risdate><volume>132</volume><issue>24</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>This work aims to propose a promising locally resonating system consisting of a tensioned elastic membrane and two-arch masses attached on the membrane surface. Traditional membrane-type resonators, which usually create one obvious attenuation zone at low frequencies, might not be efficient in multi-frequency vibration suppression. The proposed structure can produce an extra clear flexural attenuation region and shift bandgap frequencies below 300 Hz. By adjusting geometric parameters (thickness, width, and location) of the arch mass, the bandgap region can be tuned. Introducing a feasible analytical model for accurately predicting the first and second initial frequencies of the bandgaps for a beam structure containing membrane-arch-mass resonators is another focus of this study. The proposed theoretical framework can be used to tune the bandgap to different target frequency ranges without knowing the actual width of the bandgap. Finite-element analysis and experiments are conducted to verify the theoretical predictions. A good agreement is seen among the theoretical, finite-element analysis, and experimental results. In addition, adjacent cells with different arch-mass distributions can generate two pairs of flexural bandgaps, increasing the practicality in engineering applications. The proposed structure might be used in low-frequency vibration isolation and filters.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0118530</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5717-9951</orcidid><orcidid>https://orcid.org/0000-0002-4302-266X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2022-12, Vol.132 (24)
issn 0021-8979
1089-7550
language eng
recordid cdi_scitation_primary_10_1063_5_0118530
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Arches
Attenuation
Energy gap
Finite element analysis
Finite element method
Frequency ranges
Membranes
Resonators
Vibration analysis
Vibration control
title Bandgap prediction for a beam containing membrane-arch-mass resonators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A06%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bandgap%20prediction%20for%20a%20beam%20containing%20membrane-arch-mass%20resonators&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Kao,%20De-Wei&rft.date=2022-12-28&rft.volume=132&rft.issue=24&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0118530&rft_dat=%3Cproquest_scita%3E2758447070%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758447070&rft_id=info:pmid/&rfr_iscdi=true