Electrical Impedance Tomography for head-brain imaging based on iteratively reweighted least squares (IRLS) algorithm
Electrical Impedance Tomography (EIT) is a non-invasive measurement technique to obtain reconstructed images based on impedance properties. The use of EIT in the medical field has been widely applied including in the detection of brain abnormalities. In this study, EIT was developed for head-brain i...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2604 |
creator | Fahrudin, Arfan E. Endarko, Endarko Rubiyanto, Agus |
description | Electrical Impedance Tomography (EIT) is a non-invasive measurement technique to obtain reconstructed images based on impedance properties. The use of EIT in the medical field has been widely applied including in the detection of brain abnormalities. In this study, EIT was developed for head-brain imaging in which particularly to detect abnormalities in the brain and it was simulated with Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software (EIDORS). There are three processes carried out in the reconstruction of the head-brain image. These processes are namely determining the Finite Element Method (FEM) model and creating strange objects or anomaly inclusion, applying the IRLS algorithm to obtain an inversion solution, and segmenting the anomaly inclusion with k-means clustering. The results of EIT image reconstruction and evaluation with Structural Similarity Indices (SSIM) and Image Correlation Coefficient (ICC) show that the proposed method is able to obtain head-brain images with promising results. |
doi_str_mv | 10.1063/5.0117683 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0117683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811319613</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-cb06e651771b3d126e82b1d9b9f7af0d3efed41a805f61b17f66e440b7db2e363</originalsourceid><addsrcrecordid>eNp9kdFLwzAQxoMoOKcP_gcBX1TozDVt0j7KmDoYCDrBt5I0166ja7okm-y_tzLBN58Ovvvdd3x3hFwDmwAT_CGdMAApMn5CRpCmEEkB4pSMGMuTKE745zm58H7NWJxLmY3IbtZiGVxTqpbONz0a1ZVIl3Zja6f61YFW1tEVKhNpp5qONhtVN11NtfJoqB2EgE6FZo_tgTr8wqZehaHTovKB-u1OOfT0dv62eL-jqq2ta8Jqc0nOKtV6vPqtY_LxNFtOX6LF6_N8-riIehBZiErNBIoUpATNDcQCs1iDyXVeSVUxw7FCk4DKWFoJ0CArITBJmJZGx8gFH5Obo2_v7HaHPhRru3PdsLKIMwAOuQA-UPdHypdNGLLYrujdENQdir11RVr8nrToTfUfDKz4-cHfAP8Gucp5-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2811319613</pqid></control><display><type>conference_proceeding</type><title>Electrical Impedance Tomography for head-brain imaging based on iteratively reweighted least squares (IRLS) algorithm</title><source>AIP Journals Complete</source><creator>Fahrudin, Arfan E. ; Endarko, Endarko ; Rubiyanto, Agus</creator><contributor>Asih, Retno ; Saifuddin ; Nasori ; Haekal, Mohammad</contributor><creatorcontrib>Fahrudin, Arfan E. ; Endarko, Endarko ; Rubiyanto, Agus ; Asih, Retno ; Saifuddin ; Nasori ; Haekal, Mohammad</creatorcontrib><description>Electrical Impedance Tomography (EIT) is a non-invasive measurement technique to obtain reconstructed images based on impedance properties. The use of EIT in the medical field has been widely applied including in the detection of brain abnormalities. In this study, EIT was developed for head-brain imaging in which particularly to detect abnormalities in the brain and it was simulated with Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software (EIDORS). There are three processes carried out in the reconstruction of the head-brain image. These processes are namely determining the Finite Element Method (FEM) model and creating strange objects or anomaly inclusion, applying the IRLS algorithm to obtain an inversion solution, and segmenting the anomaly inclusion with k-means clustering. The results of EIT image reconstruction and evaluation with Structural Similarity Indices (SSIM) and Image Correlation Coefficient (ICC) show that the proposed method is able to obtain head-brain images with promising results.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0117683</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Abnormalities ; Algorithms ; Brain ; Cluster analysis ; Clustering ; Correlation coefficients ; Electrical impedance ; Finite element method ; Image reconstruction ; Medical imaging ; Tomography ; Vector quantization</subject><ispartof>AIP conference proceedings, 2023, Vol.2604 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0117683$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76126</link.rule.ids></links><search><contributor>Asih, Retno</contributor><contributor>Saifuddin</contributor><contributor>Nasori</contributor><contributor>Haekal, Mohammad</contributor><creatorcontrib>Fahrudin, Arfan E.</creatorcontrib><creatorcontrib>Endarko, Endarko</creatorcontrib><creatorcontrib>Rubiyanto, Agus</creatorcontrib><title>Electrical Impedance Tomography for head-brain imaging based on iteratively reweighted least squares (IRLS) algorithm</title><title>AIP conference proceedings</title><description>Electrical Impedance Tomography (EIT) is a non-invasive measurement technique to obtain reconstructed images based on impedance properties. The use of EIT in the medical field has been widely applied including in the detection of brain abnormalities. In this study, EIT was developed for head-brain imaging in which particularly to detect abnormalities in the brain and it was simulated with Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software (EIDORS). There are three processes carried out in the reconstruction of the head-brain image. These processes are namely determining the Finite Element Method (FEM) model and creating strange objects or anomaly inclusion, applying the IRLS algorithm to obtain an inversion solution, and segmenting the anomaly inclusion with k-means clustering. The results of EIT image reconstruction and evaluation with Structural Similarity Indices (SSIM) and Image Correlation Coefficient (ICC) show that the proposed method is able to obtain head-brain images with promising results.</description><subject>Abnormalities</subject><subject>Algorithms</subject><subject>Brain</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Correlation coefficients</subject><subject>Electrical impedance</subject><subject>Finite element method</subject><subject>Image reconstruction</subject><subject>Medical imaging</subject><subject>Tomography</subject><subject>Vector quantization</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kdFLwzAQxoMoOKcP_gcBX1TozDVt0j7KmDoYCDrBt5I0166ja7okm-y_tzLBN58Ovvvdd3x3hFwDmwAT_CGdMAApMn5CRpCmEEkB4pSMGMuTKE745zm58H7NWJxLmY3IbtZiGVxTqpbONz0a1ZVIl3Zja6f61YFW1tEVKhNpp5qONhtVN11NtfJoqB2EgE6FZo_tgTr8wqZehaHTovKB-u1OOfT0dv62eL-jqq2ta8Jqc0nOKtV6vPqtY_LxNFtOX6LF6_N8-riIehBZiErNBIoUpATNDcQCs1iDyXVeSVUxw7FCk4DKWFoJ0CArITBJmJZGx8gFH5Obo2_v7HaHPhRru3PdsLKIMwAOuQA-UPdHypdNGLLYrujdENQdir11RVr8nrToTfUfDKz4-cHfAP8Gucp5-A</recordid><startdate>20230509</startdate><enddate>20230509</enddate><creator>Fahrudin, Arfan E.</creator><creator>Endarko, Endarko</creator><creator>Rubiyanto, Agus</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230509</creationdate><title>Electrical Impedance Tomography for head-brain imaging based on iteratively reweighted least squares (IRLS) algorithm</title><author>Fahrudin, Arfan E. ; Endarko, Endarko ; Rubiyanto, Agus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-cb06e651771b3d126e82b1d9b9f7af0d3efed41a805f61b17f66e440b7db2e363</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abnormalities</topic><topic>Algorithms</topic><topic>Brain</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Correlation coefficients</topic><topic>Electrical impedance</topic><topic>Finite element method</topic><topic>Image reconstruction</topic><topic>Medical imaging</topic><topic>Tomography</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fahrudin, Arfan E.</creatorcontrib><creatorcontrib>Endarko, Endarko</creatorcontrib><creatorcontrib>Rubiyanto, Agus</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fahrudin, Arfan E.</au><au>Endarko, Endarko</au><au>Rubiyanto, Agus</au><au>Asih, Retno</au><au>Saifuddin</au><au>Nasori</au><au>Haekal, Mohammad</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Electrical Impedance Tomography for head-brain imaging based on iteratively reweighted least squares (IRLS) algorithm</atitle><btitle>AIP conference proceedings</btitle><date>2023-05-09</date><risdate>2023</risdate><volume>2604</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Electrical Impedance Tomography (EIT) is a non-invasive measurement technique to obtain reconstructed images based on impedance properties. The use of EIT in the medical field has been widely applied including in the detection of brain abnormalities. In this study, EIT was developed for head-brain imaging in which particularly to detect abnormalities in the brain and it was simulated with Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software (EIDORS). There are three processes carried out in the reconstruction of the head-brain image. These processes are namely determining the Finite Element Method (FEM) model and creating strange objects or anomaly inclusion, applying the IRLS algorithm to obtain an inversion solution, and segmenting the anomaly inclusion with k-means clustering. The results of EIT image reconstruction and evaluation with Structural Similarity Indices (SSIM) and Image Correlation Coefficient (ICC) show that the proposed method is able to obtain head-brain images with promising results.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0117683</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2023, Vol.2604 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0117683 |
source | AIP Journals Complete |
subjects | Abnormalities Algorithms Brain Cluster analysis Clustering Correlation coefficients Electrical impedance Finite element method Image reconstruction Medical imaging Tomography Vector quantization |
title | Electrical Impedance Tomography for head-brain imaging based on iteratively reweighted least squares (IRLS) algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T05%3A15%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Electrical%20Impedance%20Tomography%20for%20head-brain%20imaging%20based%20on%20iteratively%20reweighted%20least%20squares%20(IRLS)%20algorithm&rft.btitle=AIP%20conference%20proceedings&rft.au=Fahrudin,%20Arfan%20E.&rft.date=2023-05-09&rft.volume=2604&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0117683&rft_dat=%3Cproquest_scita%3E2811319613%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811319613&rft_id=info:pmid/&rfr_iscdi=true |