Electrical Impedance Tomography for head-brain imaging based on iteratively reweighted least squares (IRLS) algorithm

Electrical Impedance Tomography (EIT) is a non-invasive measurement technique to obtain reconstructed images based on impedance properties. The use of EIT in the medical field has been widely applied including in the detection of brain abnormalities. In this study, EIT was developed for head-brain i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fahrudin, Arfan E., Endarko, Endarko, Rubiyanto, Agus
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2604
creator Fahrudin, Arfan E.
Endarko, Endarko
Rubiyanto, Agus
description Electrical Impedance Tomography (EIT) is a non-invasive measurement technique to obtain reconstructed images based on impedance properties. The use of EIT in the medical field has been widely applied including in the detection of brain abnormalities. In this study, EIT was developed for head-brain imaging in which particularly to detect abnormalities in the brain and it was simulated with Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software (EIDORS). There are three processes carried out in the reconstruction of the head-brain image. These processes are namely determining the Finite Element Method (FEM) model and creating strange objects or anomaly inclusion, applying the IRLS algorithm to obtain an inversion solution, and segmenting the anomaly inclusion with k-means clustering. The results of EIT image reconstruction and evaluation with Structural Similarity Indices (SSIM) and Image Correlation Coefficient (ICC) show that the proposed method is able to obtain head-brain images with promising results.
doi_str_mv 10.1063/5.0117683
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0117683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811319613</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-cb06e651771b3d126e82b1d9b9f7af0d3efed41a805f61b17f66e440b7db2e363</originalsourceid><addsrcrecordid>eNp9kdFLwzAQxoMoOKcP_gcBX1TozDVt0j7KmDoYCDrBt5I0166ja7okm-y_tzLBN58Ovvvdd3x3hFwDmwAT_CGdMAApMn5CRpCmEEkB4pSMGMuTKE745zm58H7NWJxLmY3IbtZiGVxTqpbONz0a1ZVIl3Zja6f61YFW1tEVKhNpp5qONhtVN11NtfJoqB2EgE6FZo_tgTr8wqZehaHTovKB-u1OOfT0dv62eL-jqq2ta8Jqc0nOKtV6vPqtY_LxNFtOX6LF6_N8-riIehBZiErNBIoUpATNDcQCs1iDyXVeSVUxw7FCk4DKWFoJ0CArITBJmJZGx8gFH5Obo2_v7HaHPhRru3PdsLKIMwAOuQA-UPdHypdNGLLYrujdENQdir11RVr8nrToTfUfDKz4-cHfAP8Gucp5-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2811319613</pqid></control><display><type>conference_proceeding</type><title>Electrical Impedance Tomography for head-brain imaging based on iteratively reweighted least squares (IRLS) algorithm</title><source>AIP Journals Complete</source><creator>Fahrudin, Arfan E. ; Endarko, Endarko ; Rubiyanto, Agus</creator><contributor>Asih, Retno ; Saifuddin ; Nasori ; Haekal, Mohammad</contributor><creatorcontrib>Fahrudin, Arfan E. ; Endarko, Endarko ; Rubiyanto, Agus ; Asih, Retno ; Saifuddin ; Nasori ; Haekal, Mohammad</creatorcontrib><description>Electrical Impedance Tomography (EIT) is a non-invasive measurement technique to obtain reconstructed images based on impedance properties. The use of EIT in the medical field has been widely applied including in the detection of brain abnormalities. In this study, EIT was developed for head-brain imaging in which particularly to detect abnormalities in the brain and it was simulated with Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software (EIDORS). There are three processes carried out in the reconstruction of the head-brain image. These processes are namely determining the Finite Element Method (FEM) model and creating strange objects or anomaly inclusion, applying the IRLS algorithm to obtain an inversion solution, and segmenting the anomaly inclusion with k-means clustering. The results of EIT image reconstruction and evaluation with Structural Similarity Indices (SSIM) and Image Correlation Coefficient (ICC) show that the proposed method is able to obtain head-brain images with promising results.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0117683</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Abnormalities ; Algorithms ; Brain ; Cluster analysis ; Clustering ; Correlation coefficients ; Electrical impedance ; Finite element method ; Image reconstruction ; Medical imaging ; Tomography ; Vector quantization</subject><ispartof>AIP conference proceedings, 2023, Vol.2604 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0117683$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76126</link.rule.ids></links><search><contributor>Asih, Retno</contributor><contributor>Saifuddin</contributor><contributor>Nasori</contributor><contributor>Haekal, Mohammad</contributor><creatorcontrib>Fahrudin, Arfan E.</creatorcontrib><creatorcontrib>Endarko, Endarko</creatorcontrib><creatorcontrib>Rubiyanto, Agus</creatorcontrib><title>Electrical Impedance Tomography for head-brain imaging based on iteratively reweighted least squares (IRLS) algorithm</title><title>AIP conference proceedings</title><description>Electrical Impedance Tomography (EIT) is a non-invasive measurement technique to obtain reconstructed images based on impedance properties. The use of EIT in the medical field has been widely applied including in the detection of brain abnormalities. In this study, EIT was developed for head-brain imaging in which particularly to detect abnormalities in the brain and it was simulated with Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software (EIDORS). There are three processes carried out in the reconstruction of the head-brain image. These processes are namely determining the Finite Element Method (FEM) model and creating strange objects or anomaly inclusion, applying the IRLS algorithm to obtain an inversion solution, and segmenting the anomaly inclusion with k-means clustering. The results of EIT image reconstruction and evaluation with Structural Similarity Indices (SSIM) and Image Correlation Coefficient (ICC) show that the proposed method is able to obtain head-brain images with promising results.</description><subject>Abnormalities</subject><subject>Algorithms</subject><subject>Brain</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Correlation coefficients</subject><subject>Electrical impedance</subject><subject>Finite element method</subject><subject>Image reconstruction</subject><subject>Medical imaging</subject><subject>Tomography</subject><subject>Vector quantization</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kdFLwzAQxoMoOKcP_gcBX1TozDVt0j7KmDoYCDrBt5I0166ja7okm-y_tzLBN58Ovvvdd3x3hFwDmwAT_CGdMAApMn5CRpCmEEkB4pSMGMuTKE745zm58H7NWJxLmY3IbtZiGVxTqpbONz0a1ZVIl3Zja6f61YFW1tEVKhNpp5qONhtVN11NtfJoqB2EgE6FZo_tgTr8wqZehaHTovKB-u1OOfT0dv62eL-jqq2ta8Jqc0nOKtV6vPqtY_LxNFtOX6LF6_N8-riIehBZiErNBIoUpATNDcQCs1iDyXVeSVUxw7FCk4DKWFoJ0CArITBJmJZGx8gFH5Obo2_v7HaHPhRru3PdsLKIMwAOuQA-UPdHypdNGLLYrujdENQdir11RVr8nrToTfUfDKz4-cHfAP8Gucp5-A</recordid><startdate>20230509</startdate><enddate>20230509</enddate><creator>Fahrudin, Arfan E.</creator><creator>Endarko, Endarko</creator><creator>Rubiyanto, Agus</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230509</creationdate><title>Electrical Impedance Tomography for head-brain imaging based on iteratively reweighted least squares (IRLS) algorithm</title><author>Fahrudin, Arfan E. ; Endarko, Endarko ; Rubiyanto, Agus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-cb06e651771b3d126e82b1d9b9f7af0d3efed41a805f61b17f66e440b7db2e363</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abnormalities</topic><topic>Algorithms</topic><topic>Brain</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Correlation coefficients</topic><topic>Electrical impedance</topic><topic>Finite element method</topic><topic>Image reconstruction</topic><topic>Medical imaging</topic><topic>Tomography</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fahrudin, Arfan E.</creatorcontrib><creatorcontrib>Endarko, Endarko</creatorcontrib><creatorcontrib>Rubiyanto, Agus</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fahrudin, Arfan E.</au><au>Endarko, Endarko</au><au>Rubiyanto, Agus</au><au>Asih, Retno</au><au>Saifuddin</au><au>Nasori</au><au>Haekal, Mohammad</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Electrical Impedance Tomography for head-brain imaging based on iteratively reweighted least squares (IRLS) algorithm</atitle><btitle>AIP conference proceedings</btitle><date>2023-05-09</date><risdate>2023</risdate><volume>2604</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Electrical Impedance Tomography (EIT) is a non-invasive measurement technique to obtain reconstructed images based on impedance properties. The use of EIT in the medical field has been widely applied including in the detection of brain abnormalities. In this study, EIT was developed for head-brain imaging in which particularly to detect abnormalities in the brain and it was simulated with Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software (EIDORS). There are three processes carried out in the reconstruction of the head-brain image. These processes are namely determining the Finite Element Method (FEM) model and creating strange objects or anomaly inclusion, applying the IRLS algorithm to obtain an inversion solution, and segmenting the anomaly inclusion with k-means clustering. The results of EIT image reconstruction and evaluation with Structural Similarity Indices (SSIM) and Image Correlation Coefficient (ICC) show that the proposed method is able to obtain head-brain images with promising results.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0117683</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2604 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0117683
source AIP Journals Complete
subjects Abnormalities
Algorithms
Brain
Cluster analysis
Clustering
Correlation coefficients
Electrical impedance
Finite element method
Image reconstruction
Medical imaging
Tomography
Vector quantization
title Electrical Impedance Tomography for head-brain imaging based on iteratively reweighted least squares (IRLS) algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T05%3A15%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Electrical%20Impedance%20Tomography%20for%20head-brain%20imaging%20based%20on%20iteratively%20reweighted%20least%20squares%20(IRLS)%20algorithm&rft.btitle=AIP%20conference%20proceedings&rft.au=Fahrudin,%20Arfan%20E.&rft.date=2023-05-09&rft.volume=2604&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0117683&rft_dat=%3Cproquest_scita%3E2811319613%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811319613&rft_id=info:pmid/&rfr_iscdi=true