Matching of cocycle extensions for second tangent groups

We present the second-order tangent group of a Lie group as a cocycle extension of the first-order tangent group. We exhibit matching of the second-order tangent groups of two mutually interacting Lie groups. We examine the cocycle extension character of the matched second-order group and arrive at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP conference proceedings 2022-11, Vol.2483 (1)
Hauptverfasser: Uçgun, Filiz Çağatay, Esen, Oğul, Sütlü, Serkan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title AIP conference proceedings
container_volume 2483
creator Uçgun, Filiz Çağatay
Esen, Oğul
Sütlü, Serkan
description We present the second-order tangent group of a Lie group as a cocycle extension of the first-order tangent group. We exhibit matching of the second-order tangent groups of two mutually interacting Lie groups. We examine the cocycle extension character of the matched second-order group and arrive at that matched pair of cocycle extensions is a cocycle extension by itself.
doi_str_mv 10.1063/5.0114879
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0114879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2732800747</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1339-7b180ece23fcf3d71545f5f8a4a04bb6714211dbb7fc95f3a4367c9511bd65753</originalsourceid><addsrcrecordid>eNp9kEFLAzEUhIMoWKsH_0HAm7A1b5Ps2z1K0SpUvCh4C9lsUrfUZE1Ssf_elRa8eZo5fMwMQ8glsBmwit_IGQMQNTZHZAJSQoEVVMdkwlgjilLwt1NyltKasbJBrCekftLZvPd-RYOjJpid2Vhqv7P1qQ8-URciTdYE39Gs_cr6TFcxbId0Tk6c3iR7cdApeb2_e5k_FMvnxeP8dlkMwHlTYAs1s8aW3BnHOwQppJOu1kIz0bYVgigBurZFZxrpuBa8wtEBtF0lUfIpudrnDjF8bm3Kah220Y-VqkRe1oyhwJG63lPJ9FnncboaYv-h404BU7_PKKkOz_wHf4X4B6qhc_wHwMpjNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2732800747</pqid></control><display><type>article</type><title>Matching of cocycle extensions for second tangent groups</title><source>AIP Journals Complete</source><creator>Uçgun, Filiz Çağatay ; Esen, Oğul ; Sütlü, Serkan</creator><contributor>Canak, Ibrahim ; Dik, Mehmet ; Sahinaslan, Onder ; Kandemir, Hacer Sengul ; Gurtug, Ozay ; Harte, Robin ; Turkoglu, Arap Duran ; Kocinac, Ljubisa D. R. ; Ashyralyev, Allaberen ; Cakalli, Huseyin ; Aral, Nazlim Deniz ; Ucgun, Filiz Cagatay ; Savas, Ekrem ; Sezer, Sefa Anil ; Ashyralyyev, Charyyar ; Tez, Mujgan ; Onvural, Oruc Raif ; Sahin, Hakan</contributor><creatorcontrib>Uçgun, Filiz Çağatay ; Esen, Oğul ; Sütlü, Serkan ; Canak, Ibrahim ; Dik, Mehmet ; Sahinaslan, Onder ; Kandemir, Hacer Sengul ; Gurtug, Ozay ; Harte, Robin ; Turkoglu, Arap Duran ; Kocinac, Ljubisa D. R. ; Ashyralyev, Allaberen ; Cakalli, Huseyin ; Aral, Nazlim Deniz ; Ucgun, Filiz Cagatay ; Savas, Ekrem ; Sezer, Sefa Anil ; Ashyralyyev, Charyyar ; Tez, Mujgan ; Onvural, Oruc Raif ; Sahin, Hakan</creatorcontrib><description>We present the second-order tangent group of a Lie group as a cocycle extension of the first-order tangent group. We exhibit matching of the second-order tangent groups of two mutually interacting Lie groups. We examine the cocycle extension character of the matched second-order group and arrive at that matched pair of cocycle extensions is a cocycle extension by itself.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0114879</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Lie groups ; Matching</subject><ispartof>AIP conference proceedings, 2022-11, Vol.2483 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0114879$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76256</link.rule.ids></links><search><contributor>Canak, Ibrahim</contributor><contributor>Dik, Mehmet</contributor><contributor>Sahinaslan, Onder</contributor><contributor>Kandemir, Hacer Sengul</contributor><contributor>Gurtug, Ozay</contributor><contributor>Harte, Robin</contributor><contributor>Turkoglu, Arap Duran</contributor><contributor>Kocinac, Ljubisa D. R.</contributor><contributor>Ashyralyev, Allaberen</contributor><contributor>Cakalli, Huseyin</contributor><contributor>Aral, Nazlim Deniz</contributor><contributor>Ucgun, Filiz Cagatay</contributor><contributor>Savas, Ekrem</contributor><contributor>Sezer, Sefa Anil</contributor><contributor>Ashyralyyev, Charyyar</contributor><contributor>Tez, Mujgan</contributor><contributor>Onvural, Oruc Raif</contributor><contributor>Sahin, Hakan</contributor><creatorcontrib>Uçgun, Filiz Çağatay</creatorcontrib><creatorcontrib>Esen, Oğul</creatorcontrib><creatorcontrib>Sütlü, Serkan</creatorcontrib><title>Matching of cocycle extensions for second tangent groups</title><title>AIP conference proceedings</title><description>We present the second-order tangent group of a Lie group as a cocycle extension of the first-order tangent group. We exhibit matching of the second-order tangent groups of two mutually interacting Lie groups. We examine the cocycle extension character of the matched second-order group and arrive at that matched pair of cocycle extensions is a cocycle extension by itself.</description><subject>Lie groups</subject><subject>Matching</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEUhIMoWKsH_0HAm7A1b5Ps2z1K0SpUvCh4C9lsUrfUZE1Ssf_elRa8eZo5fMwMQ8glsBmwit_IGQMQNTZHZAJSQoEVVMdkwlgjilLwt1NyltKasbJBrCekftLZvPd-RYOjJpid2Vhqv7P1qQ8-URciTdYE39Gs_cr6TFcxbId0Tk6c3iR7cdApeb2_e5k_FMvnxeP8dlkMwHlTYAs1s8aW3BnHOwQppJOu1kIz0bYVgigBurZFZxrpuBa8wtEBtF0lUfIpudrnDjF8bm3Kah220Y-VqkRe1oyhwJG63lPJ9FnncboaYv-h404BU7_PKKkOz_wHf4X4B6qhc_wHwMpjNw</recordid><startdate>20221107</startdate><enddate>20221107</enddate><creator>Uçgun, Filiz Çağatay</creator><creator>Esen, Oğul</creator><creator>Sütlü, Serkan</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20221107</creationdate><title>Matching of cocycle extensions for second tangent groups</title><author>Uçgun, Filiz Çağatay ; Esen, Oğul ; Sütlü, Serkan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1339-7b180ece23fcf3d71545f5f8a4a04bb6714211dbb7fc95f3a4367c9511bd65753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Lie groups</topic><topic>Matching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uçgun, Filiz Çağatay</creatorcontrib><creatorcontrib>Esen, Oğul</creatorcontrib><creatorcontrib>Sütlü, Serkan</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIP conference proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uçgun, Filiz Çağatay</au><au>Esen, Oğul</au><au>Sütlü, Serkan</au><au>Canak, Ibrahim</au><au>Dik, Mehmet</au><au>Sahinaslan, Onder</au><au>Kandemir, Hacer Sengul</au><au>Gurtug, Ozay</au><au>Harte, Robin</au><au>Turkoglu, Arap Duran</au><au>Kocinac, Ljubisa D. R.</au><au>Ashyralyev, Allaberen</au><au>Cakalli, Huseyin</au><au>Aral, Nazlim Deniz</au><au>Ucgun, Filiz Cagatay</au><au>Savas, Ekrem</au><au>Sezer, Sefa Anil</au><au>Ashyralyyev, Charyyar</au><au>Tez, Mujgan</au><au>Onvural, Oruc Raif</au><au>Sahin, Hakan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matching of cocycle extensions for second tangent groups</atitle><jtitle>AIP conference proceedings</jtitle><date>2022-11-07</date><risdate>2022</risdate><volume>2483</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>We present the second-order tangent group of a Lie group as a cocycle extension of the first-order tangent group. We exhibit matching of the second-order tangent groups of two mutually interacting Lie groups. We examine the cocycle extension character of the matched second-order group and arrive at that matched pair of cocycle extensions is a cocycle extension by itself.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0114879</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2022-11, Vol.2483 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0114879
source AIP Journals Complete
subjects Lie groups
Matching
title Matching of cocycle extensions for second tangent groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A22%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matching%20of%20cocycle%20extensions%20for%20second%20tangent%20groups&rft.jtitle=AIP%20conference%20proceedings&rft.au=U%C3%A7gun,%20Filiz%20%C3%87a%C4%9Fatay&rft.date=2022-11-07&rft.volume=2483&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0114879&rft_dat=%3Cproquest_scita%3E2732800747%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2732800747&rft_id=info:pmid/&rfr_iscdi=true