Implementation of artificial neural network for predicting water drag of the aircraft floater
Archipelago countries certainly need cheap and fast transportation facilities to run the economy of people who live separately from the sea. One solution is a modified small aircraft with a pair of floaters to float and glide in the waters. At the time of take-off, the aircraft encounters a water dr...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2646 |
creator | Atmaja, Sigit Tri Fajar, Rizqon Syamsuar, S. Sutiyo, S. |
description | Archipelago countries certainly need cheap and fast transportation facilities to run the economy of people who live separately from the sea. One solution is a modified small aircraft with a pair of floaters to float and glide in the waters. At the time of take-off, the aircraft encounters a water drag that will prevent it from accelerating and taking off. This research aims to predict the water drag of the floater using machine learning with an Artificial Neural Network algorithm (ANN). Prediction results are used for the analysis of the thrust required for the aircraft to take off. The ANN architecture consists of one hidden layer with seven neurons, one input layer of two source nodes, one output layer of seven neurons; the activation function used is sigmoid with Nadam's optimization method. ANN algorithm is run using python-libraries. Water drag calculation using the ANN model on three floaters with different dimensions shows that the predicted value is close to the target value obtained from the Savitsky method values. The regression coefficient is close to 1, with the error approaching 0. The use of machine learning ANN in calculating water drag has also proven to be 5-7 times faster than using numerical modeling via the Savitsky method, thus saving research time and costs. |
doi_str_mv | 10.1063/5.0114019 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0114019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2806610738</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-91740143a3e4ee45694fee508f8acdd003089b421f795c4fbcd4a73fadeabb463</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsL_0HAnTD1ZpLJJEspPgoFNwpuJGTyqKnTyZhJLf57W1tw5-os7nfuvecgdElgQoDTm2oChDAg8giNSFWRouaEH6MRgGRFyejrKTobhiVAKetajNDbbNW3buW6rHOIHY4e65SDDyboFndunX4lb2L6wD4m3Cdng8mhW-CNzi5hm_RiZ8vvDuuQTNI-Y9_G3fAcnXjdDu7ioGP0cn_3PH0s5k8Ps-ntvOgJF7mQpN6-zKimjjnHKi6Zd64C4YU21gJQELJhJfG1rAzzjbFM19Rr63TTME7H6Gq_t0_xc-2GrJZxnbrtSVUK4JxATcWWut5Tgwn7uKpPYaXTt_qKSVXqUJ3qrf8PJqB2Xf8Z6A-5LnHm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2806610738</pqid></control><display><type>conference_proceeding</type><title>Implementation of artificial neural network for predicting water drag of the aircraft floater</title><source>AIP Journals Complete</source><creator>Atmaja, Sigit Tri ; Fajar, Rizqon ; Syamsuar, S. ; Sutiyo, S.</creator><contributor>Helios, Muhammad Penta ; Aji, Sudi Dul ; Triawan, Farid ; Miharja, Deni ; Rinanti, Astri ; Abdullah, Ade Gafar ; Rohadi, Erfan</contributor><creatorcontrib>Atmaja, Sigit Tri ; Fajar, Rizqon ; Syamsuar, S. ; Sutiyo, S. ; Helios, Muhammad Penta ; Aji, Sudi Dul ; Triawan, Farid ; Miharja, Deni ; Rinanti, Astri ; Abdullah, Ade Gafar ; Rohadi, Erfan</creatorcontrib><description>Archipelago countries certainly need cheap and fast transportation facilities to run the economy of people who live separately from the sea. One solution is a modified small aircraft with a pair of floaters to float and glide in the waters. At the time of take-off, the aircraft encounters a water drag that will prevent it from accelerating and taking off. This research aims to predict the water drag of the floater using machine learning with an Artificial Neural Network algorithm (ANN). Prediction results are used for the analysis of the thrust required for the aircraft to take off. The ANN architecture consists of one hidden layer with seven neurons, one input layer of two source nodes, one output layer of seven neurons; the activation function used is sigmoid with Nadam's optimization method. ANN algorithm is run using python-libraries. Water drag calculation using the ANN model on three floaters with different dimensions shows that the predicted value is close to the target value obtained from the Savitsky method values. The regression coefficient is close to 1, with the error approaching 0. The use of machine learning ANN in calculating water drag has also proven to be 5-7 times faster than using numerical modeling via the Savitsky method, thus saving research time and costs.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0114019</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aircraft ; Algorithms ; Artificial neural networks ; Drag ; Light aircraft ; Machine learning ; Neural networks ; Neurons ; Optimization ; Regression coefficients ; Takeoff</subject><ispartof>AIP conference proceedings, 2023, Vol.2646 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0114019$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Helios, Muhammad Penta</contributor><contributor>Aji, Sudi Dul</contributor><contributor>Triawan, Farid</contributor><contributor>Miharja, Deni</contributor><contributor>Rinanti, Astri</contributor><contributor>Abdullah, Ade Gafar</contributor><contributor>Rohadi, Erfan</contributor><creatorcontrib>Atmaja, Sigit Tri</creatorcontrib><creatorcontrib>Fajar, Rizqon</creatorcontrib><creatorcontrib>Syamsuar, S.</creatorcontrib><creatorcontrib>Sutiyo, S.</creatorcontrib><title>Implementation of artificial neural network for predicting water drag of the aircraft floater</title><title>AIP conference proceedings</title><description>Archipelago countries certainly need cheap and fast transportation facilities to run the economy of people who live separately from the sea. One solution is a modified small aircraft with a pair of floaters to float and glide in the waters. At the time of take-off, the aircraft encounters a water drag that will prevent it from accelerating and taking off. This research aims to predict the water drag of the floater using machine learning with an Artificial Neural Network algorithm (ANN). Prediction results are used for the analysis of the thrust required for the aircraft to take off. The ANN architecture consists of one hidden layer with seven neurons, one input layer of two source nodes, one output layer of seven neurons; the activation function used is sigmoid with Nadam's optimization method. ANN algorithm is run using python-libraries. Water drag calculation using the ANN model on three floaters with different dimensions shows that the predicted value is close to the target value obtained from the Savitsky method values. The regression coefficient is close to 1, with the error approaching 0. The use of machine learning ANN in calculating water drag has also proven to be 5-7 times faster than using numerical modeling via the Savitsky method, thus saving research time and costs.</description><subject>Aircraft</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Drag</subject><subject>Light aircraft</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Optimization</subject><subject>Regression coefficients</subject><subject>Takeoff</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLAzEUhYMoWKsL_0HAnTD1ZpLJJEspPgoFNwpuJGTyqKnTyZhJLf57W1tw5-os7nfuvecgdElgQoDTm2oChDAg8giNSFWRouaEH6MRgGRFyejrKTobhiVAKetajNDbbNW3buW6rHOIHY4e65SDDyboFndunX4lb2L6wD4m3Cdng8mhW-CNzi5hm_RiZ8vvDuuQTNI-Y9_G3fAcnXjdDu7ioGP0cn_3PH0s5k8Ps-ntvOgJF7mQpN6-zKimjjnHKi6Zd64C4YU21gJQELJhJfG1rAzzjbFM19Rr63TTME7H6Gq_t0_xc-2GrJZxnbrtSVUK4JxATcWWut5Tgwn7uKpPYaXTt_qKSVXqUJ3qrf8PJqB2Xf8Z6A-5LnHm</recordid><startdate>20230427</startdate><enddate>20230427</enddate><creator>Atmaja, Sigit Tri</creator><creator>Fajar, Rizqon</creator><creator>Syamsuar, S.</creator><creator>Sutiyo, S.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230427</creationdate><title>Implementation of artificial neural network for predicting water drag of the aircraft floater</title><author>Atmaja, Sigit Tri ; Fajar, Rizqon ; Syamsuar, S. ; Sutiyo, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-91740143a3e4ee45694fee508f8acdd003089b421f795c4fbcd4a73fadeabb463</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aircraft</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Drag</topic><topic>Light aircraft</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Optimization</topic><topic>Regression coefficients</topic><topic>Takeoff</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atmaja, Sigit Tri</creatorcontrib><creatorcontrib>Fajar, Rizqon</creatorcontrib><creatorcontrib>Syamsuar, S.</creatorcontrib><creatorcontrib>Sutiyo, S.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atmaja, Sigit Tri</au><au>Fajar, Rizqon</au><au>Syamsuar, S.</au><au>Sutiyo, S.</au><au>Helios, Muhammad Penta</au><au>Aji, Sudi Dul</au><au>Triawan, Farid</au><au>Miharja, Deni</au><au>Rinanti, Astri</au><au>Abdullah, Ade Gafar</au><au>Rohadi, Erfan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Implementation of artificial neural network for predicting water drag of the aircraft floater</atitle><btitle>AIP conference proceedings</btitle><date>2023-04-27</date><risdate>2023</risdate><volume>2646</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Archipelago countries certainly need cheap and fast transportation facilities to run the economy of people who live separately from the sea. One solution is a modified small aircraft with a pair of floaters to float and glide in the waters. At the time of take-off, the aircraft encounters a water drag that will prevent it from accelerating and taking off. This research aims to predict the water drag of the floater using machine learning with an Artificial Neural Network algorithm (ANN). Prediction results are used for the analysis of the thrust required for the aircraft to take off. The ANN architecture consists of one hidden layer with seven neurons, one input layer of two source nodes, one output layer of seven neurons; the activation function used is sigmoid with Nadam's optimization method. ANN algorithm is run using python-libraries. Water drag calculation using the ANN model on three floaters with different dimensions shows that the predicted value is close to the target value obtained from the Savitsky method values. The regression coefficient is close to 1, with the error approaching 0. The use of machine learning ANN in calculating water drag has also proven to be 5-7 times faster than using numerical modeling via the Savitsky method, thus saving research time and costs.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0114019</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2023, Vol.2646 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0114019 |
source | AIP Journals Complete |
subjects | Aircraft Algorithms Artificial neural networks Drag Light aircraft Machine learning Neural networks Neurons Optimization Regression coefficients Takeoff |
title | Implementation of artificial neural network for predicting water drag of the aircraft floater |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A47%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Implementation%20of%20artificial%20neural%20network%20for%20predicting%20water%20drag%20of%20the%20aircraft%20floater&rft.btitle=AIP%20conference%20proceedings&rft.au=Atmaja,%20Sigit%20Tri&rft.date=2023-04-27&rft.volume=2646&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0114019&rft_dat=%3Cproquest_scita%3E2806610738%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806610738&rft_id=info:pmid/&rfr_iscdi=true |