Implementation of artificial neural network for predicting water drag of the aircraft floater

Archipelago countries certainly need cheap and fast transportation facilities to run the economy of people who live separately from the sea. One solution is a modified small aircraft with a pair of floaters to float and glide in the waters. At the time of take-off, the aircraft encounters a water dr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Atmaja, Sigit Tri, Fajar, Rizqon, Syamsuar, S., Sutiyo, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2646
creator Atmaja, Sigit Tri
Fajar, Rizqon
Syamsuar, S.
Sutiyo, S.
description Archipelago countries certainly need cheap and fast transportation facilities to run the economy of people who live separately from the sea. One solution is a modified small aircraft with a pair of floaters to float and glide in the waters. At the time of take-off, the aircraft encounters a water drag that will prevent it from accelerating and taking off. This research aims to predict the water drag of the floater using machine learning with an Artificial Neural Network algorithm (ANN). Prediction results are used for the analysis of the thrust required for the aircraft to take off. The ANN architecture consists of one hidden layer with seven neurons, one input layer of two source nodes, one output layer of seven neurons; the activation function used is sigmoid with Nadam's optimization method. ANN algorithm is run using python-libraries. Water drag calculation using the ANN model on three floaters with different dimensions shows that the predicted value is close to the target value obtained from the Savitsky method values. The regression coefficient is close to 1, with the error approaching 0. The use of machine learning ANN in calculating water drag has also proven to be 5-7 times faster than using numerical modeling via the Savitsky method, thus saving research time and costs.
doi_str_mv 10.1063/5.0114019
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0114019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2806610738</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-91740143a3e4ee45694fee508f8acdd003089b421f795c4fbcd4a73fadeabb463</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsL_0HAnTD1ZpLJJEspPgoFNwpuJGTyqKnTyZhJLf57W1tw5-os7nfuvecgdElgQoDTm2oChDAg8giNSFWRouaEH6MRgGRFyejrKTobhiVAKetajNDbbNW3buW6rHOIHY4e65SDDyboFndunX4lb2L6wD4m3Cdng8mhW-CNzi5hm_RiZ8vvDuuQTNI-Y9_G3fAcnXjdDu7ioGP0cn_3PH0s5k8Ps-ntvOgJF7mQpN6-zKimjjnHKi6Zd64C4YU21gJQELJhJfG1rAzzjbFM19Rr63TTME7H6Gq_t0_xc-2GrJZxnbrtSVUK4JxATcWWut5Tgwn7uKpPYaXTt_qKSVXqUJ3qrf8PJqB2Xf8Z6A-5LnHm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2806610738</pqid></control><display><type>conference_proceeding</type><title>Implementation of artificial neural network for predicting water drag of the aircraft floater</title><source>AIP Journals Complete</source><creator>Atmaja, Sigit Tri ; Fajar, Rizqon ; Syamsuar, S. ; Sutiyo, S.</creator><contributor>Helios, Muhammad Penta ; Aji, Sudi Dul ; Triawan, Farid ; Miharja, Deni ; Rinanti, Astri ; Abdullah, Ade Gafar ; Rohadi, Erfan</contributor><creatorcontrib>Atmaja, Sigit Tri ; Fajar, Rizqon ; Syamsuar, S. ; Sutiyo, S. ; Helios, Muhammad Penta ; Aji, Sudi Dul ; Triawan, Farid ; Miharja, Deni ; Rinanti, Astri ; Abdullah, Ade Gafar ; Rohadi, Erfan</creatorcontrib><description>Archipelago countries certainly need cheap and fast transportation facilities to run the economy of people who live separately from the sea. One solution is a modified small aircraft with a pair of floaters to float and glide in the waters. At the time of take-off, the aircraft encounters a water drag that will prevent it from accelerating and taking off. This research aims to predict the water drag of the floater using machine learning with an Artificial Neural Network algorithm (ANN). Prediction results are used for the analysis of the thrust required for the aircraft to take off. The ANN architecture consists of one hidden layer with seven neurons, one input layer of two source nodes, one output layer of seven neurons; the activation function used is sigmoid with Nadam's optimization method. ANN algorithm is run using python-libraries. Water drag calculation using the ANN model on three floaters with different dimensions shows that the predicted value is close to the target value obtained from the Savitsky method values. The regression coefficient is close to 1, with the error approaching 0. The use of machine learning ANN in calculating water drag has also proven to be 5-7 times faster than using numerical modeling via the Savitsky method, thus saving research time and costs.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0114019</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aircraft ; Algorithms ; Artificial neural networks ; Drag ; Light aircraft ; Machine learning ; Neural networks ; Neurons ; Optimization ; Regression coefficients ; Takeoff</subject><ispartof>AIP conference proceedings, 2023, Vol.2646 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0114019$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Helios, Muhammad Penta</contributor><contributor>Aji, Sudi Dul</contributor><contributor>Triawan, Farid</contributor><contributor>Miharja, Deni</contributor><contributor>Rinanti, Astri</contributor><contributor>Abdullah, Ade Gafar</contributor><contributor>Rohadi, Erfan</contributor><creatorcontrib>Atmaja, Sigit Tri</creatorcontrib><creatorcontrib>Fajar, Rizqon</creatorcontrib><creatorcontrib>Syamsuar, S.</creatorcontrib><creatorcontrib>Sutiyo, S.</creatorcontrib><title>Implementation of artificial neural network for predicting water drag of the aircraft floater</title><title>AIP conference proceedings</title><description>Archipelago countries certainly need cheap and fast transportation facilities to run the economy of people who live separately from the sea. One solution is a modified small aircraft with a pair of floaters to float and glide in the waters. At the time of take-off, the aircraft encounters a water drag that will prevent it from accelerating and taking off. This research aims to predict the water drag of the floater using machine learning with an Artificial Neural Network algorithm (ANN). Prediction results are used for the analysis of the thrust required for the aircraft to take off. The ANN architecture consists of one hidden layer with seven neurons, one input layer of two source nodes, one output layer of seven neurons; the activation function used is sigmoid with Nadam's optimization method. ANN algorithm is run using python-libraries. Water drag calculation using the ANN model on three floaters with different dimensions shows that the predicted value is close to the target value obtained from the Savitsky method values. The regression coefficient is close to 1, with the error approaching 0. The use of machine learning ANN in calculating water drag has also proven to be 5-7 times faster than using numerical modeling via the Savitsky method, thus saving research time and costs.</description><subject>Aircraft</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Drag</subject><subject>Light aircraft</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Optimization</subject><subject>Regression coefficients</subject><subject>Takeoff</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLAzEUhYMoWKsL_0HAnTD1ZpLJJEspPgoFNwpuJGTyqKnTyZhJLf57W1tw5-os7nfuvecgdElgQoDTm2oChDAg8giNSFWRouaEH6MRgGRFyejrKTobhiVAKetajNDbbNW3buW6rHOIHY4e65SDDyboFndunX4lb2L6wD4m3Cdng8mhW-CNzi5hm_RiZ8vvDuuQTNI-Y9_G3fAcnXjdDu7ioGP0cn_3PH0s5k8Ps-ntvOgJF7mQpN6-zKimjjnHKi6Zd64C4YU21gJQELJhJfG1rAzzjbFM19Rr63TTME7H6Gq_t0_xc-2GrJZxnbrtSVUK4JxATcWWut5Tgwn7uKpPYaXTt_qKSVXqUJ3qrf8PJqB2Xf8Z6A-5LnHm</recordid><startdate>20230427</startdate><enddate>20230427</enddate><creator>Atmaja, Sigit Tri</creator><creator>Fajar, Rizqon</creator><creator>Syamsuar, S.</creator><creator>Sutiyo, S.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230427</creationdate><title>Implementation of artificial neural network for predicting water drag of the aircraft floater</title><author>Atmaja, Sigit Tri ; Fajar, Rizqon ; Syamsuar, S. ; Sutiyo, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-91740143a3e4ee45694fee508f8acdd003089b421f795c4fbcd4a73fadeabb463</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aircraft</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Drag</topic><topic>Light aircraft</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Optimization</topic><topic>Regression coefficients</topic><topic>Takeoff</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atmaja, Sigit Tri</creatorcontrib><creatorcontrib>Fajar, Rizqon</creatorcontrib><creatorcontrib>Syamsuar, S.</creatorcontrib><creatorcontrib>Sutiyo, S.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atmaja, Sigit Tri</au><au>Fajar, Rizqon</au><au>Syamsuar, S.</au><au>Sutiyo, S.</au><au>Helios, Muhammad Penta</au><au>Aji, Sudi Dul</au><au>Triawan, Farid</au><au>Miharja, Deni</au><au>Rinanti, Astri</au><au>Abdullah, Ade Gafar</au><au>Rohadi, Erfan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Implementation of artificial neural network for predicting water drag of the aircraft floater</atitle><btitle>AIP conference proceedings</btitle><date>2023-04-27</date><risdate>2023</risdate><volume>2646</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Archipelago countries certainly need cheap and fast transportation facilities to run the economy of people who live separately from the sea. One solution is a modified small aircraft with a pair of floaters to float and glide in the waters. At the time of take-off, the aircraft encounters a water drag that will prevent it from accelerating and taking off. This research aims to predict the water drag of the floater using machine learning with an Artificial Neural Network algorithm (ANN). Prediction results are used for the analysis of the thrust required for the aircraft to take off. The ANN architecture consists of one hidden layer with seven neurons, one input layer of two source nodes, one output layer of seven neurons; the activation function used is sigmoid with Nadam's optimization method. ANN algorithm is run using python-libraries. Water drag calculation using the ANN model on three floaters with different dimensions shows that the predicted value is close to the target value obtained from the Savitsky method values. The regression coefficient is close to 1, with the error approaching 0. The use of machine learning ANN in calculating water drag has also proven to be 5-7 times faster than using numerical modeling via the Savitsky method, thus saving research time and costs.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0114019</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2646 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0114019
source AIP Journals Complete
subjects Aircraft
Algorithms
Artificial neural networks
Drag
Light aircraft
Machine learning
Neural networks
Neurons
Optimization
Regression coefficients
Takeoff
title Implementation of artificial neural network for predicting water drag of the aircraft floater
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A47%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Implementation%20of%20artificial%20neural%20network%20for%20predicting%20water%20drag%20of%20the%20aircraft%20floater&rft.btitle=AIP%20conference%20proceedings&rft.au=Atmaja,%20Sigit%20Tri&rft.date=2023-04-27&rft.volume=2646&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0114019&rft_dat=%3Cproquest_scita%3E2806610738%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806610738&rft_id=info:pmid/&rfr_iscdi=true