Thermal growth prediction on 4 MW steam turbine casing using finite element method

Adjustment of shaft alignment in steam turbine installations is an important procedure in carrying out preventive maintenance. The shaft alignment specification consists of a coupling target and the thermal growth which depends on the operating temperature and the material used. In the new steam tur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Febriansyah, Dwijaya, Purnomo, Endra Dwi, Fadjrin, Budi Nofiyantoro, Harmadi, Rudias, Nandar, Cuk Supriyadi Ali
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2646
creator Febriansyah, Dwijaya
Purnomo, Endra Dwi
Fadjrin, Budi Nofiyantoro
Harmadi, Rudias
Nandar, Cuk Supriyadi Ali
description Adjustment of shaft alignment in steam turbine installations is an important procedure in carrying out preventive maintenance. The shaft alignment specification consists of a coupling target and the thermal growth which depends on the operating temperature and the material used. In the new steam turbine, the value of thermal growth can be calculated theoretically, but in fact, experience has proven that this method has missed a lot, whereas when using the experimental method (hot & cold alignment), the costs are quite large. To solve this problem, predicting the value of thermal growth can be done by simulating thermal expansion using the finite element method. In this study, the lower casing steam turbine simulates its thermal expansion according to its operating temperature so that the value and direction of deformation due to thermal expansion are known. The simulation results of this prediction give the thermal growth value on 4 MW backpressure steam turbine foots 0.021 mm (foot 1) and -0.055 mm (foot 2).
doi_str_mv 10.1063/5.0113778
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0113778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2806611117</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-84c38b0fd6bfd5c63dec38024106dd5b9f002f40041098a7ead6efa2c6647d5d3</originalsourceid><addsrcrecordid>eNp9kNtKAzEQhoMoWKsXvkHAO2Frsjns7qUUT1ARpKJ3IbuZtCndg0lW8e1NreCdwzADPx8z8w9C55TMKJHsSswIpawoygM0oULQrJBUHqIJIRXPcs7ejtFJCBtC8ipBE_S8XINv9RavfP8Z13jwYFwTXd_hlBw_vuIQQbc4jr52HeBGB9et8PhTretcBAxbaKGLuIW47s0pOrJ6G-Dst0_Ry-3Ncn6fLZ7uHubXi2ygsoxZyRtW1sQaWVsjGskMJIHkPPkwRtSVTUdaTkgSqlIXoI0Eq_NGSl4YYdgUXeznDr5_HyFEtelH36WVKi-JlDRFkajLPRUaF_XOmBq8a7X_UpSo3c-UUL8_-w_-6P0fqAZj2Tf6Mmzd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2806611117</pqid></control><display><type>conference_proceeding</type><title>Thermal growth prediction on 4 MW steam turbine casing using finite element method</title><source>AIP Journals Complete</source><creator>Febriansyah, Dwijaya ; Purnomo, Endra Dwi ; Fadjrin, Budi Nofiyantoro ; Harmadi, Rudias ; Nandar, Cuk Supriyadi Ali</creator><contributor>Helios, Muhammad Penta ; Aji, Sudi Dul ; Triawan, Farid ; Miharja, Deni ; Rinanti, Astri ; Abdullah, Ade Gafar ; Rohadi, Erfan</contributor><creatorcontrib>Febriansyah, Dwijaya ; Purnomo, Endra Dwi ; Fadjrin, Budi Nofiyantoro ; Harmadi, Rudias ; Nandar, Cuk Supriyadi Ali ; Helios, Muhammad Penta ; Aji, Sudi Dul ; Triawan, Farid ; Miharja, Deni ; Rinanti, Astri ; Abdullah, Ade Gafar ; Rohadi, Erfan</creatorcontrib><description>Adjustment of shaft alignment in steam turbine installations is an important procedure in carrying out preventive maintenance. The shaft alignment specification consists of a coupling target and the thermal growth which depends on the operating temperature and the material used. In the new steam turbine, the value of thermal growth can be calculated theoretically, but in fact, experience has proven that this method has missed a lot, whereas when using the experimental method (hot &amp; cold alignment), the costs are quite large. To solve this problem, predicting the value of thermal growth can be done by simulating thermal expansion using the finite element method. In this study, the lower casing steam turbine simulates its thermal expansion according to its operating temperature so that the value and direction of deformation due to thermal expansion are known. The simulation results of this prediction give the thermal growth value on 4 MW backpressure steam turbine foots 0.021 mm (foot 1) and -0.055 mm (foot 2).</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0113778</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Alignment ; Finite element analysis ; Finite element method ; Operating temperature ; Preventive maintenance ; Steam turbines ; Thermal expansion ; Thermal simulation ; Turbines</subject><ispartof>AIP conference proceedings, 2023, Vol.2646 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0113778$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,791,4498,23911,23912,25121,27905,27906,76133</link.rule.ids></links><search><contributor>Helios, Muhammad Penta</contributor><contributor>Aji, Sudi Dul</contributor><contributor>Triawan, Farid</contributor><contributor>Miharja, Deni</contributor><contributor>Rinanti, Astri</contributor><contributor>Abdullah, Ade Gafar</contributor><contributor>Rohadi, Erfan</contributor><creatorcontrib>Febriansyah, Dwijaya</creatorcontrib><creatorcontrib>Purnomo, Endra Dwi</creatorcontrib><creatorcontrib>Fadjrin, Budi Nofiyantoro</creatorcontrib><creatorcontrib>Harmadi, Rudias</creatorcontrib><creatorcontrib>Nandar, Cuk Supriyadi Ali</creatorcontrib><title>Thermal growth prediction on 4 MW steam turbine casing using finite element method</title><title>AIP conference proceedings</title><description>Adjustment of shaft alignment in steam turbine installations is an important procedure in carrying out preventive maintenance. The shaft alignment specification consists of a coupling target and the thermal growth which depends on the operating temperature and the material used. In the new steam turbine, the value of thermal growth can be calculated theoretically, but in fact, experience has proven that this method has missed a lot, whereas when using the experimental method (hot &amp; cold alignment), the costs are quite large. To solve this problem, predicting the value of thermal growth can be done by simulating thermal expansion using the finite element method. In this study, the lower casing steam turbine simulates its thermal expansion according to its operating temperature so that the value and direction of deformation due to thermal expansion are known. The simulation results of this prediction give the thermal growth value on 4 MW backpressure steam turbine foots 0.021 mm (foot 1) and -0.055 mm (foot 2).</description><subject>Alignment</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Operating temperature</subject><subject>Preventive maintenance</subject><subject>Steam turbines</subject><subject>Thermal expansion</subject><subject>Thermal simulation</subject><subject>Turbines</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kNtKAzEQhoMoWKsXvkHAO2Frsjns7qUUT1ARpKJ3IbuZtCndg0lW8e1NreCdwzADPx8z8w9C55TMKJHsSswIpawoygM0oULQrJBUHqIJIRXPcs7ejtFJCBtC8ipBE_S8XINv9RavfP8Z13jwYFwTXd_hlBw_vuIQQbc4jr52HeBGB9et8PhTretcBAxbaKGLuIW47s0pOrJ6G-Dst0_Ry-3Ncn6fLZ7uHubXi2ygsoxZyRtW1sQaWVsjGskMJIHkPPkwRtSVTUdaTkgSqlIXoI0Eq_NGSl4YYdgUXeznDr5_HyFEtelH36WVKi-JlDRFkajLPRUaF_XOmBq8a7X_UpSo3c-UUL8_-w_-6P0fqAZj2Tf6Mmzd</recordid><startdate>20230427</startdate><enddate>20230427</enddate><creator>Febriansyah, Dwijaya</creator><creator>Purnomo, Endra Dwi</creator><creator>Fadjrin, Budi Nofiyantoro</creator><creator>Harmadi, Rudias</creator><creator>Nandar, Cuk Supriyadi Ali</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230427</creationdate><title>Thermal growth prediction on 4 MW steam turbine casing using finite element method</title><author>Febriansyah, Dwijaya ; Purnomo, Endra Dwi ; Fadjrin, Budi Nofiyantoro ; Harmadi, Rudias ; Nandar, Cuk Supriyadi Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-84c38b0fd6bfd5c63dec38024106dd5b9f002f40041098a7ead6efa2c6647d5d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alignment</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Operating temperature</topic><topic>Preventive maintenance</topic><topic>Steam turbines</topic><topic>Thermal expansion</topic><topic>Thermal simulation</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Febriansyah, Dwijaya</creatorcontrib><creatorcontrib>Purnomo, Endra Dwi</creatorcontrib><creatorcontrib>Fadjrin, Budi Nofiyantoro</creatorcontrib><creatorcontrib>Harmadi, Rudias</creatorcontrib><creatorcontrib>Nandar, Cuk Supriyadi Ali</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Febriansyah, Dwijaya</au><au>Purnomo, Endra Dwi</au><au>Fadjrin, Budi Nofiyantoro</au><au>Harmadi, Rudias</au><au>Nandar, Cuk Supriyadi Ali</au><au>Helios, Muhammad Penta</au><au>Aji, Sudi Dul</au><au>Triawan, Farid</au><au>Miharja, Deni</au><au>Rinanti, Astri</au><au>Abdullah, Ade Gafar</au><au>Rohadi, Erfan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Thermal growth prediction on 4 MW steam turbine casing using finite element method</atitle><btitle>AIP conference proceedings</btitle><date>2023-04-27</date><risdate>2023</risdate><volume>2646</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Adjustment of shaft alignment in steam turbine installations is an important procedure in carrying out preventive maintenance. The shaft alignment specification consists of a coupling target and the thermal growth which depends on the operating temperature and the material used. In the new steam turbine, the value of thermal growth can be calculated theoretically, but in fact, experience has proven that this method has missed a lot, whereas when using the experimental method (hot &amp; cold alignment), the costs are quite large. To solve this problem, predicting the value of thermal growth can be done by simulating thermal expansion using the finite element method. In this study, the lower casing steam turbine simulates its thermal expansion according to its operating temperature so that the value and direction of deformation due to thermal expansion are known. The simulation results of this prediction give the thermal growth value on 4 MW backpressure steam turbine foots 0.021 mm (foot 1) and -0.055 mm (foot 2).</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0113778</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2646 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0113778
source AIP Journals Complete
subjects Alignment
Finite element analysis
Finite element method
Operating temperature
Preventive maintenance
Steam turbines
Thermal expansion
Thermal simulation
Turbines
title Thermal growth prediction on 4 MW steam turbine casing using finite element method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A08%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Thermal%20growth%20prediction%20on%204%20MW%20steam%20turbine%20casing%20using%20finite%20element%20method&rft.btitle=AIP%20conference%20proceedings&rft.au=Febriansyah,%20Dwijaya&rft.date=2023-04-27&rft.volume=2646&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0113778&rft_dat=%3Cproquest_scita%3E2806611117%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806611117&rft_id=info:pmid/&rfr_iscdi=true