Modeling and analysis of conical exhaust diffuser

The exhaust diffuser of a liquid machine, like a gas turbine, recuperates static pressing factor by decelerating the stream and changing over active energy into pressure energy. Thus, it is a crucial part in the climate of a super machine and assumes a basic part in deciding the presentation of a su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ramesh, Banoth, Ellappan, Siva Kumar, Nagaraj, Sunnam, Srinivas, Gunnala, Chinthala, Sagar
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2492
creator Ramesh, Banoth
Ellappan, Siva Kumar
Nagaraj, Sunnam
Srinivas, Gunnala
Chinthala, Sagar
description The exhaust diffuser of a liquid machine, like a gas turbine, recuperates static pressing factor by decelerating the stream and changing over active energy into pressure energy. Thus, it is a crucial part in the climate of a super machine and assumes a basic part in deciding the presentation of a super machine. As a consequence, the fluid machine's efficiency can be enhanced if the diffuser design is optimized for optimal pressure recovery. Computational fluid dynamics (CFD) study was done on diffusers with various half cone angles, and the shape that provided the maximum pressure recovery was chosen based on the results. The diffuser was then built and tested with the ideal shape. CFD analysis to determine pressure drop, velocity, heat transfer coefficient, mass flow rate, and heat transfer rate for various conical exhaust diffusers (rectangular, circular, and hexagonal), conical exhaust diffuser models modeling using CREO parametric software, and analysis in ANSYS software for different conical exhaust diffusers (rectangular, circular, and hexagonal). CFD and thermal study of conical exhaust diffusers using ANSYS analysis modules.
doi_str_mv 10.1063/5.0113401
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0113401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2817119990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c208t-ed3e67ef60d0ee14914357ae9597ac233e07f678716696f9c5a44993f1076a613</originalsourceid><addsrcrecordid>eNp9kM1KxDAYRYMoWEcXvkHBndDx-5q_ZimDfzDiRsFdCGmiGWpTk1act7cyA-5cXO7mcLkcQs4RlgiCXvElIFIGeEAK5BwrKVAckgJAsapm9PWYnOS8AaiVlE1B8DG2rgv9W2n6do7ptjnkMvrSxj5Y05Xu-91MeSzb4P2UXTolR9502Z3te0Febm-eV_fV-unuYXW9rmwNzVi5ljohnRfQgnPIFDLKpXGKK2lsTakD6YVsJAqhhFeWG8aUoh5BCiOQLsjFbndI8XNyedSbOKX5YNZ1gxJRKQUzdbmjsg2jGUPs9ZDCh0lbjaB_lWiu90r-g79i-gP10Hr6A-COX40</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2817119990</pqid></control><display><type>conference_proceeding</type><title>Modeling and analysis of conical exhaust diffuser</title><source>AIP Journals Complete</source><creator>Ramesh, Banoth ; Ellappan, Siva Kumar ; Nagaraj, Sunnam ; Srinivas, Gunnala ; Chinthala, Sagar</creator><contributor>Reddy, M Venkateswar ; Gupta, M Satyanarayana ; Anand, A Vivek</contributor><creatorcontrib>Ramesh, Banoth ; Ellappan, Siva Kumar ; Nagaraj, Sunnam ; Srinivas, Gunnala ; Chinthala, Sagar ; Reddy, M Venkateswar ; Gupta, M Satyanarayana ; Anand, A Vivek</creatorcontrib><description>The exhaust diffuser of a liquid machine, like a gas turbine, recuperates static pressing factor by decelerating the stream and changing over active energy into pressure energy. Thus, it is a crucial part in the climate of a super machine and assumes a basic part in deciding the presentation of a super machine. As a consequence, the fluid machine's efficiency can be enhanced if the diffuser design is optimized for optimal pressure recovery. Computational fluid dynamics (CFD) study was done on diffusers with various half cone angles, and the shape that provided the maximum pressure recovery was chosen based on the results. The diffuser was then built and tested with the ideal shape. CFD analysis to determine pressure drop, velocity, heat transfer coefficient, mass flow rate, and heat transfer rate for various conical exhaust diffusers (rectangular, circular, and hexagonal), conical exhaust diffuser models modeling using CREO parametric software, and analysis in ANSYS software for different conical exhaust diffusers (rectangular, circular, and hexagonal). CFD and thermal study of conical exhaust diffusers using ANSYS analysis modules.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0113401</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computational fluid dynamics ; Deceleration ; Design optimization ; Exhaust diffusers ; Exhaust gases ; Gas turbines ; Heat transfer coefficients ; Mass flow rate ; Mathematical models ; Modelling ; Pressure drop ; Pressure recovery ; Software</subject><ispartof>AIP conference proceedings, 2023, Vol.2492 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c208t-ed3e67ef60d0ee14914357ae9597ac233e07f678716696f9c5a44993f1076a613</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0113401$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Reddy, M Venkateswar</contributor><contributor>Gupta, M Satyanarayana</contributor><contributor>Anand, A Vivek</contributor><creatorcontrib>Ramesh, Banoth</creatorcontrib><creatorcontrib>Ellappan, Siva Kumar</creatorcontrib><creatorcontrib>Nagaraj, Sunnam</creatorcontrib><creatorcontrib>Srinivas, Gunnala</creatorcontrib><creatorcontrib>Chinthala, Sagar</creatorcontrib><title>Modeling and analysis of conical exhaust diffuser</title><title>AIP conference proceedings</title><description>The exhaust diffuser of a liquid machine, like a gas turbine, recuperates static pressing factor by decelerating the stream and changing over active energy into pressure energy. Thus, it is a crucial part in the climate of a super machine and assumes a basic part in deciding the presentation of a super machine. As a consequence, the fluid machine's efficiency can be enhanced if the diffuser design is optimized for optimal pressure recovery. Computational fluid dynamics (CFD) study was done on diffusers with various half cone angles, and the shape that provided the maximum pressure recovery was chosen based on the results. The diffuser was then built and tested with the ideal shape. CFD analysis to determine pressure drop, velocity, heat transfer coefficient, mass flow rate, and heat transfer rate for various conical exhaust diffusers (rectangular, circular, and hexagonal), conical exhaust diffuser models modeling using CREO parametric software, and analysis in ANSYS software for different conical exhaust diffusers (rectangular, circular, and hexagonal). CFD and thermal study of conical exhaust diffusers using ANSYS analysis modules.</description><subject>Computational fluid dynamics</subject><subject>Deceleration</subject><subject>Design optimization</subject><subject>Exhaust diffusers</subject><subject>Exhaust gases</subject><subject>Gas turbines</subject><subject>Heat transfer coefficients</subject><subject>Mass flow rate</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Pressure drop</subject><subject>Pressure recovery</subject><subject>Software</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kM1KxDAYRYMoWEcXvkHBndDx-5q_ZimDfzDiRsFdCGmiGWpTk1act7cyA-5cXO7mcLkcQs4RlgiCXvElIFIGeEAK5BwrKVAckgJAsapm9PWYnOS8AaiVlE1B8DG2rgv9W2n6do7ptjnkMvrSxj5Y05Xu-91MeSzb4P2UXTolR9502Z3te0Febm-eV_fV-unuYXW9rmwNzVi5ljohnRfQgnPIFDLKpXGKK2lsTakD6YVsJAqhhFeWG8aUoh5BCiOQLsjFbndI8XNyedSbOKX5YNZ1gxJRKQUzdbmjsg2jGUPs9ZDCh0lbjaB_lWiu90r-g79i-gP10Hr6A-COX40</recordid><startdate>20230522</startdate><enddate>20230522</enddate><creator>Ramesh, Banoth</creator><creator>Ellappan, Siva Kumar</creator><creator>Nagaraj, Sunnam</creator><creator>Srinivas, Gunnala</creator><creator>Chinthala, Sagar</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230522</creationdate><title>Modeling and analysis of conical exhaust diffuser</title><author>Ramesh, Banoth ; Ellappan, Siva Kumar ; Nagaraj, Sunnam ; Srinivas, Gunnala ; Chinthala, Sagar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c208t-ed3e67ef60d0ee14914357ae9597ac233e07f678716696f9c5a44993f1076a613</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computational fluid dynamics</topic><topic>Deceleration</topic><topic>Design optimization</topic><topic>Exhaust diffusers</topic><topic>Exhaust gases</topic><topic>Gas turbines</topic><topic>Heat transfer coefficients</topic><topic>Mass flow rate</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Pressure drop</topic><topic>Pressure recovery</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramesh, Banoth</creatorcontrib><creatorcontrib>Ellappan, Siva Kumar</creatorcontrib><creatorcontrib>Nagaraj, Sunnam</creatorcontrib><creatorcontrib>Srinivas, Gunnala</creatorcontrib><creatorcontrib>Chinthala, Sagar</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramesh, Banoth</au><au>Ellappan, Siva Kumar</au><au>Nagaraj, Sunnam</au><au>Srinivas, Gunnala</au><au>Chinthala, Sagar</au><au>Reddy, M Venkateswar</au><au>Gupta, M Satyanarayana</au><au>Anand, A Vivek</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modeling and analysis of conical exhaust diffuser</atitle><btitle>AIP conference proceedings</btitle><date>2023-05-22</date><risdate>2023</risdate><volume>2492</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The exhaust diffuser of a liquid machine, like a gas turbine, recuperates static pressing factor by decelerating the stream and changing over active energy into pressure energy. Thus, it is a crucial part in the climate of a super machine and assumes a basic part in deciding the presentation of a super machine. As a consequence, the fluid machine's efficiency can be enhanced if the diffuser design is optimized for optimal pressure recovery. Computational fluid dynamics (CFD) study was done on diffusers with various half cone angles, and the shape that provided the maximum pressure recovery was chosen based on the results. The diffuser was then built and tested with the ideal shape. CFD analysis to determine pressure drop, velocity, heat transfer coefficient, mass flow rate, and heat transfer rate for various conical exhaust diffusers (rectangular, circular, and hexagonal), conical exhaust diffuser models modeling using CREO parametric software, and analysis in ANSYS software for different conical exhaust diffusers (rectangular, circular, and hexagonal). CFD and thermal study of conical exhaust diffusers using ANSYS analysis modules.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0113401</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2492 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0113401
source AIP Journals Complete
subjects Computational fluid dynamics
Deceleration
Design optimization
Exhaust diffusers
Exhaust gases
Gas turbines
Heat transfer coefficients
Mass flow rate
Mathematical models
Modelling
Pressure drop
Pressure recovery
Software
title Modeling and analysis of conical exhaust diffuser
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A35%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modeling%20and%20analysis%20of%20conical%20exhaust%20diffuser&rft.btitle=AIP%20conference%20proceedings&rft.au=Ramesh,%20Banoth&rft.date=2023-05-22&rft.volume=2492&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0113401&rft_dat=%3Cproquest_scita%3E2817119990%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2817119990&rft_id=info:pmid/&rfr_iscdi=true