Modeling and analysis of conical exhaust diffuser
The exhaust diffuser of a liquid machine, like a gas turbine, recuperates static pressing factor by decelerating the stream and changing over active energy into pressure energy. Thus, it is a crucial part in the climate of a super machine and assumes a basic part in deciding the presentation of a su...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2492 |
creator | Ramesh, Banoth Ellappan, Siva Kumar Nagaraj, Sunnam Srinivas, Gunnala Chinthala, Sagar |
description | The exhaust diffuser of a liquid machine, like a gas turbine, recuperates static pressing factor by decelerating the stream and changing over active energy into pressure energy. Thus, it is a crucial part in the climate of a super machine and assumes a basic part in deciding the presentation of a super machine. As a consequence, the fluid machine's efficiency can be enhanced if the diffuser design is optimized for optimal pressure recovery. Computational fluid dynamics (CFD) study was done on diffusers with various half cone angles, and the shape that provided the maximum pressure recovery was chosen based on the results. The diffuser was then built and tested with the ideal shape. CFD analysis to determine pressure drop, velocity, heat transfer coefficient, mass flow rate, and heat transfer rate for various conical exhaust diffusers (rectangular, circular, and hexagonal), conical exhaust diffuser models modeling using CREO parametric software, and analysis in ANSYS software for different conical exhaust diffusers (rectangular, circular, and hexagonal). CFD and thermal study of conical exhaust diffusers using ANSYS analysis modules. |
doi_str_mv | 10.1063/5.0113401 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0113401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2817119990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c208t-ed3e67ef60d0ee14914357ae9597ac233e07f678716696f9c5a44993f1076a613</originalsourceid><addsrcrecordid>eNp9kM1KxDAYRYMoWEcXvkHBndDx-5q_ZimDfzDiRsFdCGmiGWpTk1act7cyA-5cXO7mcLkcQs4RlgiCXvElIFIGeEAK5BwrKVAckgJAsapm9PWYnOS8AaiVlE1B8DG2rgv9W2n6do7ptjnkMvrSxj5Y05Xu-91MeSzb4P2UXTolR9502Z3te0Febm-eV_fV-unuYXW9rmwNzVi5ljohnRfQgnPIFDLKpXGKK2lsTakD6YVsJAqhhFeWG8aUoh5BCiOQLsjFbndI8XNyedSbOKX5YNZ1gxJRKQUzdbmjsg2jGUPs9ZDCh0lbjaB_lWiu90r-g79i-gP10Hr6A-COX40</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2817119990</pqid></control><display><type>conference_proceeding</type><title>Modeling and analysis of conical exhaust diffuser</title><source>AIP Journals Complete</source><creator>Ramesh, Banoth ; Ellappan, Siva Kumar ; Nagaraj, Sunnam ; Srinivas, Gunnala ; Chinthala, Sagar</creator><contributor>Reddy, M Venkateswar ; Gupta, M Satyanarayana ; Anand, A Vivek</contributor><creatorcontrib>Ramesh, Banoth ; Ellappan, Siva Kumar ; Nagaraj, Sunnam ; Srinivas, Gunnala ; Chinthala, Sagar ; Reddy, M Venkateswar ; Gupta, M Satyanarayana ; Anand, A Vivek</creatorcontrib><description>The exhaust diffuser of a liquid machine, like a gas turbine, recuperates static pressing factor by decelerating the stream and changing over active energy into pressure energy. Thus, it is a crucial part in the climate of a super machine and assumes a basic part in deciding the presentation of a super machine. As a consequence, the fluid machine's efficiency can be enhanced if the diffuser design is optimized for optimal pressure recovery. Computational fluid dynamics (CFD) study was done on diffusers with various half cone angles, and the shape that provided the maximum pressure recovery was chosen based on the results. The diffuser was then built and tested with the ideal shape. CFD analysis to determine pressure drop, velocity, heat transfer coefficient, mass flow rate, and heat transfer rate for various conical exhaust diffusers (rectangular, circular, and hexagonal), conical exhaust diffuser models modeling using CREO parametric software, and analysis in ANSYS software for different conical exhaust diffusers (rectangular, circular, and hexagonal). CFD and thermal study of conical exhaust diffusers using ANSYS analysis modules.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0113401</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computational fluid dynamics ; Deceleration ; Design optimization ; Exhaust diffusers ; Exhaust gases ; Gas turbines ; Heat transfer coefficients ; Mass flow rate ; Mathematical models ; Modelling ; Pressure drop ; Pressure recovery ; Software</subject><ispartof>AIP conference proceedings, 2023, Vol.2492 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c208t-ed3e67ef60d0ee14914357ae9597ac233e07f678716696f9c5a44993f1076a613</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0113401$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Reddy, M Venkateswar</contributor><contributor>Gupta, M Satyanarayana</contributor><contributor>Anand, A Vivek</contributor><creatorcontrib>Ramesh, Banoth</creatorcontrib><creatorcontrib>Ellappan, Siva Kumar</creatorcontrib><creatorcontrib>Nagaraj, Sunnam</creatorcontrib><creatorcontrib>Srinivas, Gunnala</creatorcontrib><creatorcontrib>Chinthala, Sagar</creatorcontrib><title>Modeling and analysis of conical exhaust diffuser</title><title>AIP conference proceedings</title><description>The exhaust diffuser of a liquid machine, like a gas turbine, recuperates static pressing factor by decelerating the stream and changing over active energy into pressure energy. Thus, it is a crucial part in the climate of a super machine and assumes a basic part in deciding the presentation of a super machine. As a consequence, the fluid machine's efficiency can be enhanced if the diffuser design is optimized for optimal pressure recovery. Computational fluid dynamics (CFD) study was done on diffusers with various half cone angles, and the shape that provided the maximum pressure recovery was chosen based on the results. The diffuser was then built and tested with the ideal shape. CFD analysis to determine pressure drop, velocity, heat transfer coefficient, mass flow rate, and heat transfer rate for various conical exhaust diffusers (rectangular, circular, and hexagonal), conical exhaust diffuser models modeling using CREO parametric software, and analysis in ANSYS software for different conical exhaust diffusers (rectangular, circular, and hexagonal). CFD and thermal study of conical exhaust diffusers using ANSYS analysis modules.</description><subject>Computational fluid dynamics</subject><subject>Deceleration</subject><subject>Design optimization</subject><subject>Exhaust diffusers</subject><subject>Exhaust gases</subject><subject>Gas turbines</subject><subject>Heat transfer coefficients</subject><subject>Mass flow rate</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Pressure drop</subject><subject>Pressure recovery</subject><subject>Software</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kM1KxDAYRYMoWEcXvkHBndDx-5q_ZimDfzDiRsFdCGmiGWpTk1act7cyA-5cXO7mcLkcQs4RlgiCXvElIFIGeEAK5BwrKVAckgJAsapm9PWYnOS8AaiVlE1B8DG2rgv9W2n6do7ptjnkMvrSxj5Y05Xu-91MeSzb4P2UXTolR9502Z3te0Febm-eV_fV-unuYXW9rmwNzVi5ljohnRfQgnPIFDLKpXGKK2lsTakD6YVsJAqhhFeWG8aUoh5BCiOQLsjFbndI8XNyedSbOKX5YNZ1gxJRKQUzdbmjsg2jGUPs9ZDCh0lbjaB_lWiu90r-g79i-gP10Hr6A-COX40</recordid><startdate>20230522</startdate><enddate>20230522</enddate><creator>Ramesh, Banoth</creator><creator>Ellappan, Siva Kumar</creator><creator>Nagaraj, Sunnam</creator><creator>Srinivas, Gunnala</creator><creator>Chinthala, Sagar</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230522</creationdate><title>Modeling and analysis of conical exhaust diffuser</title><author>Ramesh, Banoth ; Ellappan, Siva Kumar ; Nagaraj, Sunnam ; Srinivas, Gunnala ; Chinthala, Sagar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c208t-ed3e67ef60d0ee14914357ae9597ac233e07f678716696f9c5a44993f1076a613</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computational fluid dynamics</topic><topic>Deceleration</topic><topic>Design optimization</topic><topic>Exhaust diffusers</topic><topic>Exhaust gases</topic><topic>Gas turbines</topic><topic>Heat transfer coefficients</topic><topic>Mass flow rate</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Pressure drop</topic><topic>Pressure recovery</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramesh, Banoth</creatorcontrib><creatorcontrib>Ellappan, Siva Kumar</creatorcontrib><creatorcontrib>Nagaraj, Sunnam</creatorcontrib><creatorcontrib>Srinivas, Gunnala</creatorcontrib><creatorcontrib>Chinthala, Sagar</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramesh, Banoth</au><au>Ellappan, Siva Kumar</au><au>Nagaraj, Sunnam</au><au>Srinivas, Gunnala</au><au>Chinthala, Sagar</au><au>Reddy, M Venkateswar</au><au>Gupta, M Satyanarayana</au><au>Anand, A Vivek</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modeling and analysis of conical exhaust diffuser</atitle><btitle>AIP conference proceedings</btitle><date>2023-05-22</date><risdate>2023</risdate><volume>2492</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The exhaust diffuser of a liquid machine, like a gas turbine, recuperates static pressing factor by decelerating the stream and changing over active energy into pressure energy. Thus, it is a crucial part in the climate of a super machine and assumes a basic part in deciding the presentation of a super machine. As a consequence, the fluid machine's efficiency can be enhanced if the diffuser design is optimized for optimal pressure recovery. Computational fluid dynamics (CFD) study was done on diffusers with various half cone angles, and the shape that provided the maximum pressure recovery was chosen based on the results. The diffuser was then built and tested with the ideal shape. CFD analysis to determine pressure drop, velocity, heat transfer coefficient, mass flow rate, and heat transfer rate for various conical exhaust diffusers (rectangular, circular, and hexagonal), conical exhaust diffuser models modeling using CREO parametric software, and analysis in ANSYS software for different conical exhaust diffusers (rectangular, circular, and hexagonal). CFD and thermal study of conical exhaust diffusers using ANSYS analysis modules.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0113401</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2023, Vol.2492 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0113401 |
source | AIP Journals Complete |
subjects | Computational fluid dynamics Deceleration Design optimization Exhaust diffusers Exhaust gases Gas turbines Heat transfer coefficients Mass flow rate Mathematical models Modelling Pressure drop Pressure recovery Software |
title | Modeling and analysis of conical exhaust diffuser |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A35%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modeling%20and%20analysis%20of%20conical%20exhaust%20diffuser&rft.btitle=AIP%20conference%20proceedings&rft.au=Ramesh,%20Banoth&rft.date=2023-05-22&rft.volume=2492&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0113401&rft_dat=%3Cproquest_scita%3E2817119990%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2817119990&rft_id=info:pmid/&rfr_iscdi=true |