Continuous monotonic decomposition of corona product Cn⊙ Km

Let G be a simple graph with an edge set E(G). If G1, G2, G3, … , Gr are connected edge disjoint subgraphs of G with E(G) = E(G1) ∪ E(G2) ∪ E(G3) ∪ … ∪ E(Gr), then G1, G2, G3, … , Gr is a decomposition of G. An (a, d) − Continuous Monotonic Decompositions, or (a, d) − CMD, of G is a decomposition of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP conference proceedings 2022-10, Vol.2668 (1)
Hauptverfasser: Suaidah, Suaidah, Purwanto, Purwanto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title AIP conference proceedings
container_volume 2668
creator Suaidah, Suaidah
Purwanto, Purwanto
description Let G be a simple graph with an edge set E(G). If G1, G2, G3, … , Gr are connected edge disjoint subgraphs of G with E(G) = E(G1) ∪ E(G2) ∪ E(G3) ∪ … ∪ E(Gr), then G1, G2, G3, … , Gr is a decomposition of G. An (a, d) − Continuous Monotonic Decompositions, or (a, d) − CMD, of G is a decomposition of G into r subgraphs G1, G2, G3, … , Gr such that every Gi is connected and |E(Gi)| = a + (i − 1)d, for every i = 1, 2, 3, . . , r. Many authors have studied decomposition, including (a, d) − CMD, of graphs. In this paper we study (a, d) − CMD of some other class of graphs. Let n and m be positive integers, n ≥ 3. The corona product of a cycle Cn and an empty graph Km¯, denoted Cn⊙ Km¯, is a graph formed from Cn and n copies of Km¯ by joining each ith vertex of Cn, with an edge, to every vertex of the ith copy of Km¯. A caterpillar is a tree in which the removal of all its end vertices results a path. In this paper we find an (a, d) − CMD of Cn⊙ Km¯ into caterpillars.
doi_str_mv 10.1063/5.0111839
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0111839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723624515</sourcerecordid><originalsourceid>FETCH-LOGICAL-p989-8024e8760a830003fb390dae9489ae18fd012e9a53a6689cb39aa5efa7bc91023</originalsourceid><addsrcrecordid>eNotkLFOwzAYhC0EEqUw8AaR2JBSftuxY08IRRQQlVg6sFmu40ipiP8QOwMbK7wBr9cnIVU73XCnu09HyDWFBQXJ78QCKKWK6xMyo0LQvJRUnpIZgC5yVvD3c3IR4xaA6bJUM3JfYUhtGHGMWYcBE4bWZbV32PUY29RiyLDJHA4YbNYPWI8uZVXY_f7tvn9eu0ty1tiP6K-OOifr5eO6es5Xb08v1cMq77XSuQJWeFVKsIoDAG82XENtvS6Utp6qpgbKvLaCWymVdpNtrfCNLTdOU2B8Tm4OtRPB5-hjMlschzAtGlYyLlkhqJhSt4dUdG2ye3bTD21nhy9Dwez_McIc_-H_jAlYig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723624515</pqid></control><display><type>article</type><title>Continuous monotonic decomposition of corona product Cn⊙ Km</title><source>AIP Journals Complete</source><creator>Suaidah, Suaidah ; Purwanto, Purwanto</creator><contributor>Siringoringo, Meiliyani ; Hiyahara, Irfan Ashari ; Nugroho, Rudy Agung ; Wahidah ; Allo, Veliyana Londong ; Prangga, Surya ; Munir, Rahmiati</contributor><creatorcontrib>Suaidah, Suaidah ; Purwanto, Purwanto ; Siringoringo, Meiliyani ; Hiyahara, Irfan Ashari ; Nugroho, Rudy Agung ; Wahidah ; Allo, Veliyana Londong ; Prangga, Surya ; Munir, Rahmiati</creatorcontrib><description>Let G be a simple graph with an edge set E(G). If G1, G2, G3, … , Gr are connected edge disjoint subgraphs of G with E(G) = E(G1) ∪ E(G2) ∪ E(G3) ∪ … ∪ E(Gr), then G1, G2, G3, … , Gr is a decomposition of G. An (a, d) − Continuous Monotonic Decompositions, or (a, d) − CMD, of G is a decomposition of G into r subgraphs G1, G2, G3, … , Gr such that every Gi is connected and |E(Gi)| = a + (i − 1)d, for every i = 1, 2, 3, . . , r. Many authors have studied decomposition, including (a, d) − CMD, of graphs. In this paper we study (a, d) − CMD of some other class of graphs. Let n and m be positive integers, n ≥ 3. The corona product of a cycle Cn and an empty graph Km¯, denoted Cn⊙ Km¯, is a graph formed from Cn and n copies of Km¯ by joining each ith vertex of Cn, with an edge, to every vertex of the ith copy of Km¯. A caterpillar is a tree in which the removal of all its end vertices results a path. In this paper we find an (a, d) − CMD of Cn⊙ Km¯ into caterpillars.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0111839</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Apexes ; Caterpillars ; Decomposition ; Graph theory ; Graphs</subject><ispartof>AIP conference proceedings, 2022-10, Vol.2668 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0111839$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,778,782,787,788,792,4500,23917,23918,25127,27911,27912,76141</link.rule.ids></links><search><contributor>Siringoringo, Meiliyani</contributor><contributor>Hiyahara, Irfan Ashari</contributor><contributor>Nugroho, Rudy Agung</contributor><contributor>Wahidah</contributor><contributor>Allo, Veliyana Londong</contributor><contributor>Prangga, Surya</contributor><contributor>Munir, Rahmiati</contributor><creatorcontrib>Suaidah, Suaidah</creatorcontrib><creatorcontrib>Purwanto, Purwanto</creatorcontrib><title>Continuous monotonic decomposition of corona product Cn⊙ Km</title><title>AIP conference proceedings</title><description>Let G be a simple graph with an edge set E(G). If G1, G2, G3, … , Gr are connected edge disjoint subgraphs of G with E(G) = E(G1) ∪ E(G2) ∪ E(G3) ∪ … ∪ E(Gr), then G1, G2, G3, … , Gr is a decomposition of G. An (a, d) − Continuous Monotonic Decompositions, or (a, d) − CMD, of G is a decomposition of G into r subgraphs G1, G2, G3, … , Gr such that every Gi is connected and |E(Gi)| = a + (i − 1)d, for every i = 1, 2, 3, . . , r. Many authors have studied decomposition, including (a, d) − CMD, of graphs. In this paper we study (a, d) − CMD of some other class of graphs. Let n and m be positive integers, n ≥ 3. The corona product of a cycle Cn and an empty graph Km¯, denoted Cn⊙ Km¯, is a graph formed from Cn and n copies of Km¯ by joining each ith vertex of Cn, with an edge, to every vertex of the ith copy of Km¯. A caterpillar is a tree in which the removal of all its end vertices results a path. In this paper we find an (a, d) − CMD of Cn⊙ Km¯ into caterpillars.</description><subject>Apexes</subject><subject>Caterpillars</subject><subject>Decomposition</subject><subject>Graph theory</subject><subject>Graphs</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkLFOwzAYhC0EEqUw8AaR2JBSftuxY08IRRQQlVg6sFmu40ipiP8QOwMbK7wBr9cnIVU73XCnu09HyDWFBQXJ78QCKKWK6xMyo0LQvJRUnpIZgC5yVvD3c3IR4xaA6bJUM3JfYUhtGHGMWYcBE4bWZbV32PUY29RiyLDJHA4YbNYPWI8uZVXY_f7tvn9eu0ty1tiP6K-OOifr5eO6es5Xb08v1cMq77XSuQJWeFVKsIoDAG82XENtvS6Utp6qpgbKvLaCWymVdpNtrfCNLTdOU2B8Tm4OtRPB5-hjMlschzAtGlYyLlkhqJhSt4dUdG2ye3bTD21nhy9Dwez_McIc_-H_jAlYig</recordid><startdate>20221011</startdate><enddate>20221011</enddate><creator>Suaidah, Suaidah</creator><creator>Purwanto, Purwanto</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20221011</creationdate><title>Continuous monotonic decomposition of corona product Cn⊙ Km</title><author>Suaidah, Suaidah ; Purwanto, Purwanto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p989-8024e8760a830003fb390dae9489ae18fd012e9a53a6689cb39aa5efa7bc91023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apexes</topic><topic>Caterpillars</topic><topic>Decomposition</topic><topic>Graph theory</topic><topic>Graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suaidah, Suaidah</creatorcontrib><creatorcontrib>Purwanto, Purwanto</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIP conference proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suaidah, Suaidah</au><au>Purwanto, Purwanto</au><au>Siringoringo, Meiliyani</au><au>Hiyahara, Irfan Ashari</au><au>Nugroho, Rudy Agung</au><au>Wahidah</au><au>Allo, Veliyana Londong</au><au>Prangga, Surya</au><au>Munir, Rahmiati</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous monotonic decomposition of corona product Cn⊙ Km</atitle><jtitle>AIP conference proceedings</jtitle><date>2022-10-11</date><risdate>2022</risdate><volume>2668</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Let G be a simple graph with an edge set E(G). If G1, G2, G3, … , Gr are connected edge disjoint subgraphs of G with E(G) = E(G1) ∪ E(G2) ∪ E(G3) ∪ … ∪ E(Gr), then G1, G2, G3, … , Gr is a decomposition of G. An (a, d) − Continuous Monotonic Decompositions, or (a, d) − CMD, of G is a decomposition of G into r subgraphs G1, G2, G3, … , Gr such that every Gi is connected and |E(Gi)| = a + (i − 1)d, for every i = 1, 2, 3, . . , r. Many authors have studied decomposition, including (a, d) − CMD, of graphs. In this paper we study (a, d) − CMD of some other class of graphs. Let n and m be positive integers, n ≥ 3. The corona product of a cycle Cn and an empty graph Km¯, denoted Cn⊙ Km¯, is a graph formed from Cn and n copies of Km¯ by joining each ith vertex of Cn, with an edge, to every vertex of the ith copy of Km¯. A caterpillar is a tree in which the removal of all its end vertices results a path. In this paper we find an (a, d) − CMD of Cn⊙ Km¯ into caterpillars.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0111839</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2022-10, Vol.2668 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0111839
source AIP Journals Complete
subjects Apexes
Caterpillars
Decomposition
Graph theory
Graphs
title Continuous monotonic decomposition of corona product Cn⊙ Km
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A31%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20monotonic%20decomposition%20of%20corona%20product%20Cn%E2%8A%99%E2%80%89Km&rft.jtitle=AIP%20conference%20proceedings&rft.au=Suaidah,%20Suaidah&rft.date=2022-10-11&rft.volume=2668&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0111839&rft_dat=%3Cproquest_scita%3E2723624515%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723624515&rft_id=info:pmid/&rfr_iscdi=true