Distance estimation between moving objects using monocular camera
Distance estimation between two or more objects is a crucial task in the computer vision research area. Moreover, in the era of COVID-19, it becomes an urgent issue as it can enable social distance preserved. Distance estimation could be done using stereo vision (stereoscopic photogammetry) but requ...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2540 |
creator | Habibi, M. R. Irawan, Mohammad Isa Setiyono, Budi |
description | Distance estimation between two or more objects is a crucial task in the computer vision research area. Moreover, in the era of COVID-19, it becomes an urgent issue as it can enable social distance preserved. Distance estimation could be done using stereo vision (stereoscopic photogammetry) but requires more complexity. In this paper, researchers show distance estimation is possible using only monocular vision. We propose a deep-learning based method, Mobilenet Single Shot Detector (MSSD), combined with Camera Calibration to detect objects and estimate the distance between them in the setting of monocular vision. To verify the robustness of the proposed method, we created a dataset video using a monocular camera. The experimental results showed the performance of the proposed method could estimate the distance properly using the recorded dataset. |
doi_str_mv | 10.1063/5.0111106 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0111106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770135829</sourcerecordid><originalsourceid>FETCH-LOGICAL-p98f-31b8b8a5e4a2b3b522ab379ec4215f81aae4f52a18396aa63a924114e0638dfd3</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRsFYPfoOANyF1Z_8ku8dSrQoFLz14W2aTjSQ02bibVPz2prbgzbkMA7-Zee8Rcgt0ATTjD3JBYSqanZEZSAlpnkF2TmaUapEywd8vyVWMDaVM57makeVjHQfsCpe4ONQtDrXvEuuGL-e6pPX7uvtIvG1cMcRkjIep9Z0vxh2GpMDWBbwmFxXuors59TnZrp-2q5d08_b8ulpu0l6rKuVglVUonUBmuZWMoeW5doVgICsFiE5UkiEorjPEjKNmAkC4yZQqq5LPyd3xbB_85ziJNY0fQzd9NCzPKXCpmJ6o-yMVi3r4NWP6MNkK32bvg5HmlI7py-o_GKg5xPm3wH8AOxFmng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2770135829</pqid></control><display><type>conference_proceeding</type><title>Distance estimation between moving objects using monocular camera</title><source>AIP Journals Complete</source><creator>Habibi, M. R. ; Irawan, Mohammad Isa ; Setiyono, Budi</creator><contributor>Sari, Meida Wulan ; Indriyanti, Nurma Yunita</contributor><creatorcontrib>Habibi, M. R. ; Irawan, Mohammad Isa ; Setiyono, Budi ; Sari, Meida Wulan ; Indriyanti, Nurma Yunita</creatorcontrib><description>Distance estimation between two or more objects is a crucial task in the computer vision research area. Moreover, in the era of COVID-19, it becomes an urgent issue as it can enable social distance preserved. Distance estimation could be done using stereo vision (stereoscopic photogammetry) but requires more complexity. In this paper, researchers show distance estimation is possible using only monocular vision. We propose a deep-learning based method, Mobilenet Single Shot Detector (MSSD), combined with Camera Calibration to detect objects and estimate the distance between them in the setting of monocular vision. To verify the robustness of the proposed method, we created a dataset video using a monocular camera. The experimental results showed the performance of the proposed method could estimate the distance properly using the recorded dataset.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0111106</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Cameras ; Computer vision ; Datasets ; Monocular vision ; Object recognition</subject><ispartof>AIP Conference Proceedings, 2023, Vol.2540 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0111106$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Sari, Meida Wulan</contributor><contributor>Indriyanti, Nurma Yunita</contributor><creatorcontrib>Habibi, M. R.</creatorcontrib><creatorcontrib>Irawan, Mohammad Isa</creatorcontrib><creatorcontrib>Setiyono, Budi</creatorcontrib><title>Distance estimation between moving objects using monocular camera</title><title>AIP Conference Proceedings</title><description>Distance estimation between two or more objects is a crucial task in the computer vision research area. Moreover, in the era of COVID-19, it becomes an urgent issue as it can enable social distance preserved. Distance estimation could be done using stereo vision (stereoscopic photogammetry) but requires more complexity. In this paper, researchers show distance estimation is possible using only monocular vision. We propose a deep-learning based method, Mobilenet Single Shot Detector (MSSD), combined with Camera Calibration to detect objects and estimate the distance between them in the setting of monocular vision. To verify the robustness of the proposed method, we created a dataset video using a monocular camera. The experimental results showed the performance of the proposed method could estimate the distance properly using the recorded dataset.</description><subject>Cameras</subject><subject>Computer vision</subject><subject>Datasets</subject><subject>Monocular vision</subject><subject>Object recognition</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE9Lw0AQxRdRsFYPfoOANyF1Z_8ku8dSrQoFLz14W2aTjSQ02bibVPz2prbgzbkMA7-Zee8Rcgt0ATTjD3JBYSqanZEZSAlpnkF2TmaUapEywd8vyVWMDaVM57makeVjHQfsCpe4ONQtDrXvEuuGL-e6pPX7uvtIvG1cMcRkjIep9Z0vxh2GpMDWBbwmFxXuors59TnZrp-2q5d08_b8ulpu0l6rKuVglVUonUBmuZWMoeW5doVgICsFiE5UkiEorjPEjKNmAkC4yZQqq5LPyd3xbB_85ziJNY0fQzd9NCzPKXCpmJ6o-yMVi3r4NWP6MNkK32bvg5HmlI7py-o_GKg5xPm3wH8AOxFmng</recordid><startdate>20230127</startdate><enddate>20230127</enddate><creator>Habibi, M. R.</creator><creator>Irawan, Mohammad Isa</creator><creator>Setiyono, Budi</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230127</creationdate><title>Distance estimation between moving objects using monocular camera</title><author>Habibi, M. R. ; Irawan, Mohammad Isa ; Setiyono, Budi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p98f-31b8b8a5e4a2b3b522ab379ec4215f81aae4f52a18396aa63a924114e0638dfd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cameras</topic><topic>Computer vision</topic><topic>Datasets</topic><topic>Monocular vision</topic><topic>Object recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Habibi, M. R.</creatorcontrib><creatorcontrib>Irawan, Mohammad Isa</creatorcontrib><creatorcontrib>Setiyono, Budi</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Habibi, M. R.</au><au>Irawan, Mohammad Isa</au><au>Setiyono, Budi</au><au>Sari, Meida Wulan</au><au>Indriyanti, Nurma Yunita</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Distance estimation between moving objects using monocular camera</atitle><btitle>AIP Conference Proceedings</btitle><date>2023-01-27</date><risdate>2023</risdate><volume>2540</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Distance estimation between two or more objects is a crucial task in the computer vision research area. Moreover, in the era of COVID-19, it becomes an urgent issue as it can enable social distance preserved. Distance estimation could be done using stereo vision (stereoscopic photogammetry) but requires more complexity. In this paper, researchers show distance estimation is possible using only monocular vision. We propose a deep-learning based method, Mobilenet Single Shot Detector (MSSD), combined with Camera Calibration to detect objects and estimate the distance between them in the setting of monocular vision. To verify the robustness of the proposed method, we created a dataset video using a monocular camera. The experimental results showed the performance of the proposed method could estimate the distance properly using the recorded dataset.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0111106</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2023, Vol.2540 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0111106 |
source | AIP Journals Complete |
subjects | Cameras Computer vision Datasets Monocular vision Object recognition |
title | Distance estimation between moving objects using monocular camera |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A09%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Distance%20estimation%20between%20moving%20objects%20using%20monocular%20camera&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Habibi,%20M.%20R.&rft.date=2023-01-27&rft.volume=2540&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0111106&rft_dat=%3Cproquest_scita%3E2770135829%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2770135829&rft_id=info:pmid/&rfr_iscdi=true |