Sufficient and necessary conditions of a module to be the unique factorization modules

An integral domain D is called a unique factorization domain (UFD) if the following conditions are satisfied: (1) Every element of D that is neither O nor a unit can be factored into a product of a finite number of irreducibles, and (2) if p1, … , pr and q1 …, qs are two factorizations of the same e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP conference proceedings 2022-11, Vol.2639 (1)
Hauptverfasser: Prabhadika, I Putu Yudi, Wahyuni, Sri
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title AIP conference proceedings
container_volume 2639
creator Prabhadika, I Putu Yudi
Wahyuni, Sri
description An integral domain D is called a unique factorization domain (UFD) if the following conditions are satisfied: (1) Every element of D that is neither O nor a unit can be factored into a product of a finite number of irreducibles, and (2) if p1, … , pr and q1 …, qs are two factorizations of the same element of D into irreducibles, then r = s and qj can be renumbered so that pi and qi are associates. It has been known the following equivalent conditions: Let D be an integral domain, the following are equivalent: (i) D is a UFD, (ii) D is a GCD domain satisfying the ascending chain condition on principal ideals, and (iii) D satisfies the ascending chain condition on principal ideals and every irreducible element of D is a prime element of D. The concept and the equivalent conditions on UFD, motivate some studies that may apply the concept of factorization to modules in order to obtain a definition of a unique factorization module (UFM). First, the concept of irreducible elements is given in the module which will play an important role in defining the UFM. The definition of primitive elements, pure submodules, least common multiple and greatest common divisor in a module is also given. Next, the definition and characterization of a UFM will be presented. The results of this study is providing the sufficient and necessary conditions of a module to be UFM.
doi_str_mv 10.1063/5.0110885
format Article
fullrecord <record><control><sourceid>scitation</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0110885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>acp</sourcerecordid><originalsourceid>FETCH-LOGICAL-s1055-7b4186442adc2d9839faa6fc080fcdae3e116ddfed57ae591913ad59c6b76f983</originalsourceid><addsrcrecordid>eNp9kEtLAzEcxIMoWKsHv0HOwtb8N5vXUYpaoeDBB95CNg-MtEnd7Ar66d3qgjcvM5ffDMMgdA5kAYTTS7YgAERKdoBmwBhUggM_RDNCVFPVDX05RielvBFSKyHkDD0_DCFEG33qsUkOJ299Kab7xDYnF_uYU8E5YIO32Q0bj_uM21FfPR5SfB88Dsb2uYtfZs9OVDlFR8Fsij-bfI6ebq4fl6tqfX97t7xaVwUIY5VoG5C8aWrjbO2UpCoYw4MlkgTrjKcegDsXvGPCeKZAATWOKctbwcPIz9HFb2-xsf9ZoHdd3I779UfuNNPTG3rnwn8wEL2_7y9AvwFhpWOA</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sufficient and necessary conditions of a module to be the unique factorization modules</title><source>AIP Journals Complete</source><creator>Prabhadika, I Putu Yudi ; Wahyuni, Sri</creator><contributor>Nusantara, Toto ; Purwanto ; Hafiizh, Mochammad ; Rahmadani, Desi</contributor><creatorcontrib>Prabhadika, I Putu Yudi ; Wahyuni, Sri ; Nusantara, Toto ; Purwanto ; Hafiizh, Mochammad ; Rahmadani, Desi</creatorcontrib><description>An integral domain D is called a unique factorization domain (UFD) if the following conditions are satisfied: (1) Every element of D that is neither O nor a unit can be factored into a product of a finite number of irreducibles, and (2) if p1, … , pr and q1 …, qs are two factorizations of the same element of D into irreducibles, then r = s and qj can be renumbered so that pi and qi are associates. It has been known the following equivalent conditions: Let D be an integral domain, the following are equivalent: (i) D is a UFD, (ii) D is a GCD domain satisfying the ascending chain condition on principal ideals, and (iii) D satisfies the ascending chain condition on principal ideals and every irreducible element of D is a prime element of D. The concept and the equivalent conditions on UFD, motivate some studies that may apply the concept of factorization to modules in order to obtain a definition of a unique factorization module (UFM). First, the concept of irreducible elements is given in the module which will play an important role in defining the UFM. The definition of primitive elements, pure submodules, least common multiple and greatest common divisor in a module is also given. Next, the definition and characterization of a UFM will be presented. The results of this study is providing the sufficient and necessary conditions of a module to be UFM.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0110885</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><ispartof>AIP conference proceedings, 2022-11, Vol.2639 (1)</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0110885$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><contributor>Nusantara, Toto</contributor><contributor>Purwanto</contributor><contributor>Hafiizh, Mochammad</contributor><contributor>Rahmadani, Desi</contributor><creatorcontrib>Prabhadika, I Putu Yudi</creatorcontrib><creatorcontrib>Wahyuni, Sri</creatorcontrib><title>Sufficient and necessary conditions of a module to be the unique factorization modules</title><title>AIP conference proceedings</title><description>An integral domain D is called a unique factorization domain (UFD) if the following conditions are satisfied: (1) Every element of D that is neither O nor a unit can be factored into a product of a finite number of irreducibles, and (2) if p1, … , pr and q1 …, qs are two factorizations of the same element of D into irreducibles, then r = s and qj can be renumbered so that pi and qi are associates. It has been known the following equivalent conditions: Let D be an integral domain, the following are equivalent: (i) D is a UFD, (ii) D is a GCD domain satisfying the ascending chain condition on principal ideals, and (iii) D satisfies the ascending chain condition on principal ideals and every irreducible element of D is a prime element of D. The concept and the equivalent conditions on UFD, motivate some studies that may apply the concept of factorization to modules in order to obtain a definition of a unique factorization module (UFM). First, the concept of irreducible elements is given in the module which will play an important role in defining the UFM. The definition of primitive elements, pure submodules, least common multiple and greatest common divisor in a module is also given. Next, the definition and characterization of a UFM will be presented. The results of this study is providing the sufficient and necessary conditions of a module to be UFM.</description><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNp9kEtLAzEcxIMoWKsHv0HOwtb8N5vXUYpaoeDBB95CNg-MtEnd7Ar66d3qgjcvM5ffDMMgdA5kAYTTS7YgAERKdoBmwBhUggM_RDNCVFPVDX05RielvBFSKyHkDD0_DCFEG33qsUkOJ299Kab7xDYnF_uYU8E5YIO32Q0bj_uM21FfPR5SfB88Dsb2uYtfZs9OVDlFR8Fsij-bfI6ebq4fl6tqfX97t7xaVwUIY5VoG5C8aWrjbO2UpCoYw4MlkgTrjKcegDsXvGPCeKZAATWOKctbwcPIz9HFb2-xsf9ZoHdd3I779UfuNNPTG3rnwn8wEL2_7y9AvwFhpWOA</recordid><startdate>20221102</startdate><enddate>20221102</enddate><creator>Prabhadika, I Putu Yudi</creator><creator>Wahyuni, Sri</creator><scope/></search><sort><creationdate>20221102</creationdate><title>Sufficient and necessary conditions of a module to be the unique factorization modules</title><author>Prabhadika, I Putu Yudi ; Wahyuni, Sri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s1055-7b4186442adc2d9839faa6fc080fcdae3e116ddfed57ae591913ad59c6b76f983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prabhadika, I Putu Yudi</creatorcontrib><creatorcontrib>Wahyuni, Sri</creatorcontrib><jtitle>AIP conference proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prabhadika, I Putu Yudi</au><au>Wahyuni, Sri</au><au>Nusantara, Toto</au><au>Purwanto</au><au>Hafiizh, Mochammad</au><au>Rahmadani, Desi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sufficient and necessary conditions of a module to be the unique factorization modules</atitle><jtitle>AIP conference proceedings</jtitle><date>2022-11-02</date><risdate>2022</risdate><volume>2639</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>An integral domain D is called a unique factorization domain (UFD) if the following conditions are satisfied: (1) Every element of D that is neither O nor a unit can be factored into a product of a finite number of irreducibles, and (2) if p1, … , pr and q1 …, qs are two factorizations of the same element of D into irreducibles, then r = s and qj can be renumbered so that pi and qi are associates. It has been known the following equivalent conditions: Let D be an integral domain, the following are equivalent: (i) D is a UFD, (ii) D is a GCD domain satisfying the ascending chain condition on principal ideals, and (iii) D satisfies the ascending chain condition on principal ideals and every irreducible element of D is a prime element of D. The concept and the equivalent conditions on UFD, motivate some studies that may apply the concept of factorization to modules in order to obtain a definition of a unique factorization module (UFM). First, the concept of irreducible elements is given in the module which will play an important role in defining the UFM. The definition of primitive elements, pure submodules, least common multiple and greatest common divisor in a module is also given. Next, the definition and characterization of a UFM will be presented. The results of this study is providing the sufficient and necessary conditions of a module to be UFM.</abstract><doi>10.1063/5.0110885</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2022-11, Vol.2639 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0110885
source AIP Journals Complete
title Sufficient and necessary conditions of a module to be the unique factorization modules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sufficient%20and%20necessary%20conditions%20of%20a%20module%20to%20be%20the%20unique%20factorization%20modules&rft.jtitle=AIP%20conference%20proceedings&rft.au=Prabhadika,%20I%20Putu%20Yudi&rft.date=2022-11-02&rft.volume=2639&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0110885&rft_dat=%3Cscitation%3Eacp%3C/scitation%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true