Small graphs on Ramsey minimal P4 versus P6
We consider two simple graphs G and H, the notation F → (G, H) means that for any red- blue coloring of all the edges of graph F contains either a red copy isomorphic to G or a blue copy isomorphic to H. A graph F is Ramsey (G, H)-minimal graph if F → (G, H) and for any edge e in F then F - e → (G,...
Gespeichert in:
Veröffentlicht in: | AIP conference proceedings 2022-11, Vol.2639 (1) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | AIP conference proceedings |
container_volume | 2639 |
creator | Rahmadani, Desi Wahyuningsih, Sapti Semanicova-Fenovcikova, Andrea Cahyani, Denis Eka |
description | We consider two simple graphs G and H, the notation F → (G, H) means that for any red- blue coloring of all the edges of graph F contains either a red copy isomorphic to G or a blue copy isomorphic to H. A graph F is Ramsey (G, H)-minimal graph if F → (G, H) and for any edge e in F then F - e → (G, H). The set of all Ramsey minimal graphs for pair (G, H) is denoted by R(G, H). The Ramsey set for pair (G, H) is said to be Ramsey-finite or Ramsey-infinite if R(G, H) is finite or infinite, respectively. Several articles have discussed the problem of determining whether R(G, H) is finite (infinite). It is known that the set R(Pm, Pn), for 3 ≤ m ≤ n is Ramsey-infinite. Some partial results in R(P4, Pn), for n = 4 and n = 5 , have been obtained. Motivated by this, we are interested in determining graphs in R(P4, P6). In this paper, we determine some graphs of certain order in R(P4, P6). |
doi_str_mv | 10.1063/5.0109981 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0109981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731251990</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1331-7f9545acdf479ba8dc08f44395bc38a8352f651044350881f10e1b6a521d5d9d3</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRMFYX_oMBd0rqvZm5ycxSilWhYPEB7oZpktGUvJxJC_33Rlpw5-rCuR_nHA5jlwhThFTc0hQQtFZ4xCIkwjhLMT1mEYCWcSLFxyk7C2ENkOgsUxG7eW1sXfNPb_uvwLuWv9gmlDveVG01fvhS8m3pwybwZXrOTpytQ3lxuBP2Pr9_mz3Gi-eHp9ndIu5RiDHRaZJk88LJTK-sKnJQTkqhaZULZZWgxKWEMEoESqFDKHGVWkqwoEIXYsKu9r697743ZRjMutv4dow0SSYwIdQaRup6T4W8GuxQda3p_djZ7wyC-R3DkDmM8R-87fwfaPrCiR89wFx2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731251990</pqid></control><display><type>article</type><title>Small graphs on Ramsey minimal P4 versus P6</title><source>AIP Journals Complete</source><creator>Rahmadani, Desi ; Wahyuningsih, Sapti ; Semanicova-Fenovcikova, Andrea ; Cahyani, Denis Eka</creator><contributor>Nusantara, Toto ; Purwanto ; Hafiizh, Mochammad ; Rahmadani, Desi</contributor><creatorcontrib>Rahmadani, Desi ; Wahyuningsih, Sapti ; Semanicova-Fenovcikova, Andrea ; Cahyani, Denis Eka ; Nusantara, Toto ; Purwanto ; Hafiizh, Mochammad ; Rahmadani, Desi</creatorcontrib><description>We consider two simple graphs G and H, the notation F → (G, H) means that for any red- blue coloring of all the edges of graph F contains either a red copy isomorphic to G or a blue copy isomorphic to H. A graph F is Ramsey (G, H)-minimal graph if F → (G, H) and for any edge e in F then F - e → (G, H). The set of all Ramsey minimal graphs for pair (G, H) is denoted by R(G, H). The Ramsey set for pair (G, H) is said to be Ramsey-finite or Ramsey-infinite if R(G, H) is finite or infinite, respectively. Several articles have discussed the problem of determining whether R(G, H) is finite (infinite). It is known that the set R(Pm, Pn), for 3 ≤ m ≤ n is Ramsey-infinite. Some partial results in R(P4, Pn), for n = 4 and n = 5 , have been obtained. Motivated by this, we are interested in determining graphs in R(P4, P6). In this paper, we determine some graphs of certain order in R(P4, P6).</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0109981</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Graph theory ; Graphs</subject><ispartof>AIP conference proceedings, 2022-11, Vol.2639 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0109981$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Nusantara, Toto</contributor><contributor>Purwanto</contributor><contributor>Hafiizh, Mochammad</contributor><contributor>Rahmadani, Desi</contributor><creatorcontrib>Rahmadani, Desi</creatorcontrib><creatorcontrib>Wahyuningsih, Sapti</creatorcontrib><creatorcontrib>Semanicova-Fenovcikova, Andrea</creatorcontrib><creatorcontrib>Cahyani, Denis Eka</creatorcontrib><title>Small graphs on Ramsey minimal P4 versus P6</title><title>AIP conference proceedings</title><description>We consider two simple graphs G and H, the notation F → (G, H) means that for any red- blue coloring of all the edges of graph F contains either a red copy isomorphic to G or a blue copy isomorphic to H. A graph F is Ramsey (G, H)-minimal graph if F → (G, H) and for any edge e in F then F - e → (G, H). The set of all Ramsey minimal graphs for pair (G, H) is denoted by R(G, H). The Ramsey set for pair (G, H) is said to be Ramsey-finite or Ramsey-infinite if R(G, H) is finite or infinite, respectively. Several articles have discussed the problem of determining whether R(G, H) is finite (infinite). It is known that the set R(Pm, Pn), for 3 ≤ m ≤ n is Ramsey-infinite. Some partial results in R(P4, Pn), for n = 4 and n = 5 , have been obtained. Motivated by this, we are interested in determining graphs in R(P4, P6). In this paper, we determine some graphs of certain order in R(P4, P6).</description><subject>Graph theory</subject><subject>Graphs</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRMFYX_oMBd0rqvZm5ycxSilWhYPEB7oZpktGUvJxJC_33Rlpw5-rCuR_nHA5jlwhThFTc0hQQtFZ4xCIkwjhLMT1mEYCWcSLFxyk7C2ENkOgsUxG7eW1sXfNPb_uvwLuWv9gmlDveVG01fvhS8m3pwybwZXrOTpytQ3lxuBP2Pr9_mz3Gi-eHp9ndIu5RiDHRaZJk88LJTK-sKnJQTkqhaZULZZWgxKWEMEoESqFDKHGVWkqwoEIXYsKu9r697743ZRjMutv4dow0SSYwIdQaRup6T4W8GuxQda3p_djZ7wyC-R3DkDmM8R-87fwfaPrCiR89wFx2</recordid><startdate>20221102</startdate><enddate>20221102</enddate><creator>Rahmadani, Desi</creator><creator>Wahyuningsih, Sapti</creator><creator>Semanicova-Fenovcikova, Andrea</creator><creator>Cahyani, Denis Eka</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20221102</creationdate><title>Small graphs on Ramsey minimal P4 versus P6</title><author>Rahmadani, Desi ; Wahyuningsih, Sapti ; Semanicova-Fenovcikova, Andrea ; Cahyani, Denis Eka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1331-7f9545acdf479ba8dc08f44395bc38a8352f651044350881f10e1b6a521d5d9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Graph theory</topic><topic>Graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahmadani, Desi</creatorcontrib><creatorcontrib>Wahyuningsih, Sapti</creatorcontrib><creatorcontrib>Semanicova-Fenovcikova, Andrea</creatorcontrib><creatorcontrib>Cahyani, Denis Eka</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIP conference proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahmadani, Desi</au><au>Wahyuningsih, Sapti</au><au>Semanicova-Fenovcikova, Andrea</au><au>Cahyani, Denis Eka</au><au>Nusantara, Toto</au><au>Purwanto</au><au>Hafiizh, Mochammad</au><au>Rahmadani, Desi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small graphs on Ramsey minimal P4 versus P6</atitle><jtitle>AIP conference proceedings</jtitle><date>2022-11-02</date><risdate>2022</risdate><volume>2639</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>We consider two simple graphs G and H, the notation F → (G, H) means that for any red- blue coloring of all the edges of graph F contains either a red copy isomorphic to G or a blue copy isomorphic to H. A graph F is Ramsey (G, H)-minimal graph if F → (G, H) and for any edge e in F then F - e → (G, H). The set of all Ramsey minimal graphs for pair (G, H) is denoted by R(G, H). The Ramsey set for pair (G, H) is said to be Ramsey-finite or Ramsey-infinite if R(G, H) is finite or infinite, respectively. Several articles have discussed the problem of determining whether R(G, H) is finite (infinite). It is known that the set R(Pm, Pn), for 3 ≤ m ≤ n is Ramsey-infinite. Some partial results in R(P4, Pn), for n = 4 and n = 5 , have been obtained. Motivated by this, we are interested in determining graphs in R(P4, P6). In this paper, we determine some graphs of certain order in R(P4, P6).</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0109981</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2022-11, Vol.2639 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0109981 |
source | AIP Journals Complete |
subjects | Graph theory Graphs |
title | Small graphs on Ramsey minimal P4 versus P6 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A44%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20graphs%20on%20Ramsey%20minimal%20P4%20versus%20P6&rft.jtitle=AIP%20conference%20proceedings&rft.au=Rahmadani,%20Desi&rft.date=2022-11-02&rft.volume=2639&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0109981&rft_dat=%3Cproquest_scita%3E2731251990%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731251990&rft_id=info:pmid/&rfr_iscdi=true |