Small graphs on Ramsey minimal P4 versus P6

We consider two simple graphs G and H, the notation F → (G, H) means that for any red- blue coloring of all the edges of graph F contains either a red copy isomorphic to G or a blue copy isomorphic to H. A graph F is Ramsey (G, H)-minimal graph if F → (G, H) and for any edge e in F then F - e → (G,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP conference proceedings 2022-11, Vol.2639 (1)
Hauptverfasser: Rahmadani, Desi, Wahyuningsih, Sapti, Semanicova-Fenovcikova, Andrea, Cahyani, Denis Eka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title AIP conference proceedings
container_volume 2639
creator Rahmadani, Desi
Wahyuningsih, Sapti
Semanicova-Fenovcikova, Andrea
Cahyani, Denis Eka
description We consider two simple graphs G and H, the notation F → (G, H) means that for any red- blue coloring of all the edges of graph F contains either a red copy isomorphic to G or a blue copy isomorphic to H. A graph F is Ramsey (G, H)-minimal graph if F → (G, H) and for any edge e in F then F - e → (G, H). The set of all Ramsey minimal graphs for pair (G, H) is denoted by R(G, H). The Ramsey set for pair (G, H) is said to be Ramsey-finite or Ramsey-infinite if R(G, H) is finite or infinite, respectively. Several articles have discussed the problem of determining whether R(G, H) is finite (infinite). It is known that the set R(Pm, Pn), for 3 ≤ m ≤ n is Ramsey-infinite. Some partial results in R(P4, Pn), for n = 4 and n = 5 , have been obtained. Motivated by this, we are interested in determining graphs in R(P4, P6). In this paper, we determine some graphs of certain order in R(P4, P6).
doi_str_mv 10.1063/5.0109981
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0109981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731251990</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1331-7f9545acdf479ba8dc08f44395bc38a8352f651044350881f10e1b6a521d5d9d3</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRMFYX_oMBd0rqvZm5ycxSilWhYPEB7oZpktGUvJxJC_33Rlpw5-rCuR_nHA5jlwhThFTc0hQQtFZ4xCIkwjhLMT1mEYCWcSLFxyk7C2ENkOgsUxG7eW1sXfNPb_uvwLuWv9gmlDveVG01fvhS8m3pwybwZXrOTpytQ3lxuBP2Pr9_mz3Gi-eHp9ndIu5RiDHRaZJk88LJTK-sKnJQTkqhaZULZZWgxKWEMEoESqFDKHGVWkqwoEIXYsKu9r697743ZRjMutv4dow0SSYwIdQaRup6T4W8GuxQda3p_djZ7wyC-R3DkDmM8R-87fwfaPrCiR89wFx2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731251990</pqid></control><display><type>article</type><title>Small graphs on Ramsey minimal P4 versus P6</title><source>AIP Journals Complete</source><creator>Rahmadani, Desi ; Wahyuningsih, Sapti ; Semanicova-Fenovcikova, Andrea ; Cahyani, Denis Eka</creator><contributor>Nusantara, Toto ; Purwanto ; Hafiizh, Mochammad ; Rahmadani, Desi</contributor><creatorcontrib>Rahmadani, Desi ; Wahyuningsih, Sapti ; Semanicova-Fenovcikova, Andrea ; Cahyani, Denis Eka ; Nusantara, Toto ; Purwanto ; Hafiizh, Mochammad ; Rahmadani, Desi</creatorcontrib><description>We consider two simple graphs G and H, the notation F → (G, H) means that for any red- blue coloring of all the edges of graph F contains either a red copy isomorphic to G or a blue copy isomorphic to H. A graph F is Ramsey (G, H)-minimal graph if F → (G, H) and for any edge e in F then F - e → (G, H). The set of all Ramsey minimal graphs for pair (G, H) is denoted by R(G, H). The Ramsey set for pair (G, H) is said to be Ramsey-finite or Ramsey-infinite if R(G, H) is finite or infinite, respectively. Several articles have discussed the problem of determining whether R(G, H) is finite (infinite). It is known that the set R(Pm, Pn), for 3 ≤ m ≤ n is Ramsey-infinite. Some partial results in R(P4, Pn), for n = 4 and n = 5 , have been obtained. Motivated by this, we are interested in determining graphs in R(P4, P6). In this paper, we determine some graphs of certain order in R(P4, P6).</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0109981</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Graph theory ; Graphs</subject><ispartof>AIP conference proceedings, 2022-11, Vol.2639 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0109981$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Nusantara, Toto</contributor><contributor>Purwanto</contributor><contributor>Hafiizh, Mochammad</contributor><contributor>Rahmadani, Desi</contributor><creatorcontrib>Rahmadani, Desi</creatorcontrib><creatorcontrib>Wahyuningsih, Sapti</creatorcontrib><creatorcontrib>Semanicova-Fenovcikova, Andrea</creatorcontrib><creatorcontrib>Cahyani, Denis Eka</creatorcontrib><title>Small graphs on Ramsey minimal P4 versus P6</title><title>AIP conference proceedings</title><description>We consider two simple graphs G and H, the notation F → (G, H) means that for any red- blue coloring of all the edges of graph F contains either a red copy isomorphic to G or a blue copy isomorphic to H. A graph F is Ramsey (G, H)-minimal graph if F → (G, H) and for any edge e in F then F - e → (G, H). The set of all Ramsey minimal graphs for pair (G, H) is denoted by R(G, H). The Ramsey set for pair (G, H) is said to be Ramsey-finite or Ramsey-infinite if R(G, H) is finite or infinite, respectively. Several articles have discussed the problem of determining whether R(G, H) is finite (infinite). It is known that the set R(Pm, Pn), for 3 ≤ m ≤ n is Ramsey-infinite. Some partial results in R(P4, Pn), for n = 4 and n = 5 , have been obtained. Motivated by this, we are interested in determining graphs in R(P4, P6). In this paper, we determine some graphs of certain order in R(P4, P6).</description><subject>Graph theory</subject><subject>Graphs</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRMFYX_oMBd0rqvZm5ycxSilWhYPEB7oZpktGUvJxJC_33Rlpw5-rCuR_nHA5jlwhThFTc0hQQtFZ4xCIkwjhLMT1mEYCWcSLFxyk7C2ENkOgsUxG7eW1sXfNPb_uvwLuWv9gmlDveVG01fvhS8m3pwybwZXrOTpytQ3lxuBP2Pr9_mz3Gi-eHp9ndIu5RiDHRaZJk88LJTK-sKnJQTkqhaZULZZWgxKWEMEoESqFDKHGVWkqwoEIXYsKu9r697743ZRjMutv4dow0SSYwIdQaRup6T4W8GuxQda3p_djZ7wyC-R3DkDmM8R-87fwfaPrCiR89wFx2</recordid><startdate>20221102</startdate><enddate>20221102</enddate><creator>Rahmadani, Desi</creator><creator>Wahyuningsih, Sapti</creator><creator>Semanicova-Fenovcikova, Andrea</creator><creator>Cahyani, Denis Eka</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20221102</creationdate><title>Small graphs on Ramsey minimal P4 versus P6</title><author>Rahmadani, Desi ; Wahyuningsih, Sapti ; Semanicova-Fenovcikova, Andrea ; Cahyani, Denis Eka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1331-7f9545acdf479ba8dc08f44395bc38a8352f651044350881f10e1b6a521d5d9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Graph theory</topic><topic>Graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahmadani, Desi</creatorcontrib><creatorcontrib>Wahyuningsih, Sapti</creatorcontrib><creatorcontrib>Semanicova-Fenovcikova, Andrea</creatorcontrib><creatorcontrib>Cahyani, Denis Eka</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIP conference proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahmadani, Desi</au><au>Wahyuningsih, Sapti</au><au>Semanicova-Fenovcikova, Andrea</au><au>Cahyani, Denis Eka</au><au>Nusantara, Toto</au><au>Purwanto</au><au>Hafiizh, Mochammad</au><au>Rahmadani, Desi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small graphs on Ramsey minimal P4 versus P6</atitle><jtitle>AIP conference proceedings</jtitle><date>2022-11-02</date><risdate>2022</risdate><volume>2639</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>We consider two simple graphs G and H, the notation F → (G, H) means that for any red- blue coloring of all the edges of graph F contains either a red copy isomorphic to G or a blue copy isomorphic to H. A graph F is Ramsey (G, H)-minimal graph if F → (G, H) and for any edge e in F then F - e → (G, H). The set of all Ramsey minimal graphs for pair (G, H) is denoted by R(G, H). The Ramsey set for pair (G, H) is said to be Ramsey-finite or Ramsey-infinite if R(G, H) is finite or infinite, respectively. Several articles have discussed the problem of determining whether R(G, H) is finite (infinite). It is known that the set R(Pm, Pn), for 3 ≤ m ≤ n is Ramsey-infinite. Some partial results in R(P4, Pn), for n = 4 and n = 5 , have been obtained. Motivated by this, we are interested in determining graphs in R(P4, P6). In this paper, we determine some graphs of certain order in R(P4, P6).</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0109981</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2022-11, Vol.2639 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0109981
source AIP Journals Complete
subjects Graph theory
Graphs
title Small graphs on Ramsey minimal P4 versus P6
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A44%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20graphs%20on%20Ramsey%20minimal%20P4%20versus%20P6&rft.jtitle=AIP%20conference%20proceedings&rft.au=Rahmadani,%20Desi&rft.date=2022-11-02&rft.volume=2639&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0109981&rft_dat=%3Cproquest_scita%3E2731251990%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731251990&rft_id=info:pmid/&rfr_iscdi=true