Some fixed point theorems in generalized modular metric space

In this paper, we discuss some properties of generalized modular metric spaces. This space was first introduced by Turkoglu and Manav in 2018. Later, we extend the concepts about contraction mappings in generalized modular metric spaces. We also develop a convexity structure and defined the N normal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Harini, L, Lestari, H. P., Caturiyati
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2575
creator Harini, L
Lestari, H. P.
Caturiyati
description In this paper, we discuss some properties of generalized modular metric spaces. This space was first introduced by Turkoglu and Manav in 2018. Later, we extend the concepts about contraction mappings in generalized modular metric spaces. We also develop a convexity structure and defined the N normal structure in this space.The results show us that if X is a complete modular metric space and TN is a contraction mapping then T has a unique fixed point.Moreover, we need the constant of generalized modular metric axiom should be less than or equal to 1 to guarantee the ball is closed. The closeness property of the ball is necessary to generate normal structure in generalized modular metric space. This normal structure property assures the existence of the fixed point of a nonexpansive mapping.
doi_str_mv 10.1063/5.0107775
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0107775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2748004210</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2035-ebb5f36a34f2c88a01b937013aee18f46d298dfe1f8b10258ca0ac81a759297d3</originalsourceid><addsrcrecordid>eNp9kE1LxDAYhIMouK4e_AcBb0LXN0nTpAcPsvgFCx5U8BbS9o1maZuadEX99VZ2wZunOczDzDCEnDJYMCjEhVwAA6WU3CMzJiXLVMGKfTIDKPOM5-LlkByltAbgpVJ6Ri4fQ4fU-U9s6BB8P9LxDUPELlHf01fsMdrWf09uF5pNayPtcIy-pmmwNR6TA2fbhCc7nZPnm-un5V22eri9X16tsoGDkBlWlXSisCJ3vNbaAqtKoYAJi8i0y4uGl7pxyJyuGHCpawu21swqWU47GzEnZ9vcIYb3DabRrMMm9lOl4SrXADlnMFHnWyrVfrSjD70Zou9s_DIMzO89RprdPf_BHyH-gWZonPgBAhFlBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2748004210</pqid></control><display><type>conference_proceeding</type><title>Some fixed point theorems in generalized modular metric space</title><source>AIP Journals Complete</source><creator>Harini, L ; Lestari, H. P. ; Caturiyati</creator><contributor>Andayani, Sri ; Sahid ; Wutsqa, Dhoriva Urwatul ; Hartono ; Retnowati, Endah ; Kismiantini ; Retnawati, Heri ; Somerkoski, Brita ; Abadi, Agus Maman ; Sugiman ; Setyaningrum, Wahyu</contributor><creatorcontrib>Harini, L ; Lestari, H. P. ; Caturiyati ; Andayani, Sri ; Sahid ; Wutsqa, Dhoriva Urwatul ; Hartono ; Retnowati, Endah ; Kismiantini ; Retnawati, Heri ; Somerkoski, Brita ; Abadi, Agus Maman ; Sugiman ; Setyaningrum, Wahyu</creatorcontrib><description>In this paper, we discuss some properties of generalized modular metric spaces. This space was first introduced by Turkoglu and Manav in 2018. Later, we extend the concepts about contraction mappings in generalized modular metric spaces. We also develop a convexity structure and defined the N normal structure in this space.The results show us that if X is a complete modular metric space and TN is a contraction mapping then T has a unique fixed point.Moreover, we need the constant of generalized modular metric axiom should be less than or equal to 1 to guarantee the ball is closed. The closeness property of the ball is necessary to generate normal structure in generalized modular metric space. This normal structure property assures the existence of the fixed point of a nonexpansive mapping.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0107775</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Convexity ; Fixed points (mathematics) ; Mapping ; Metric space ; Modular structures</subject><ispartof>AIP Conference Proceedings, 2022, Vol.2575 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0107775$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Andayani, Sri</contributor><contributor>Sahid</contributor><contributor>Wutsqa, Dhoriva Urwatul</contributor><contributor>Hartono</contributor><contributor>Retnowati, Endah</contributor><contributor>Kismiantini</contributor><contributor>Retnawati, Heri</contributor><contributor>Somerkoski, Brita</contributor><contributor>Abadi, Agus Maman</contributor><contributor>Sugiman</contributor><contributor>Setyaningrum, Wahyu</contributor><creatorcontrib>Harini, L</creatorcontrib><creatorcontrib>Lestari, H. P.</creatorcontrib><creatorcontrib>Caturiyati</creatorcontrib><title>Some fixed point theorems in generalized modular metric space</title><title>AIP Conference Proceedings</title><description>In this paper, we discuss some properties of generalized modular metric spaces. This space was first introduced by Turkoglu and Manav in 2018. Later, we extend the concepts about contraction mappings in generalized modular metric spaces. We also develop a convexity structure and defined the N normal structure in this space.The results show us that if X is a complete modular metric space and TN is a contraction mapping then T has a unique fixed point.Moreover, we need the constant of generalized modular metric axiom should be less than or equal to 1 to guarantee the ball is closed. The closeness property of the ball is necessary to generate normal structure in generalized modular metric space. This normal structure property assures the existence of the fixed point of a nonexpansive mapping.</description><subject>Convexity</subject><subject>Fixed points (mathematics)</subject><subject>Mapping</subject><subject>Metric space</subject><subject>Modular structures</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LxDAYhIMouK4e_AcBb0LXN0nTpAcPsvgFCx5U8BbS9o1maZuadEX99VZ2wZunOczDzDCEnDJYMCjEhVwAA6WU3CMzJiXLVMGKfTIDKPOM5-LlkByltAbgpVJ6Ri4fQ4fU-U9s6BB8P9LxDUPELlHf01fsMdrWf09uF5pNayPtcIy-pmmwNR6TA2fbhCc7nZPnm-un5V22eri9X16tsoGDkBlWlXSisCJ3vNbaAqtKoYAJi8i0y4uGl7pxyJyuGHCpawu21swqWU47GzEnZ9vcIYb3DabRrMMm9lOl4SrXADlnMFHnWyrVfrSjD70Zou9s_DIMzO89RprdPf_BHyH-gWZonPgBAhFlBw</recordid><startdate>20221208</startdate><enddate>20221208</enddate><creator>Harini, L</creator><creator>Lestari, H. P.</creator><creator>Caturiyati</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20221208</creationdate><title>Some fixed point theorems in generalized modular metric space</title><author>Harini, L ; Lestari, H. P. ; Caturiyati</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2035-ebb5f36a34f2c88a01b937013aee18f46d298dfe1f8b10258ca0ac81a759297d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convexity</topic><topic>Fixed points (mathematics)</topic><topic>Mapping</topic><topic>Metric space</topic><topic>Modular structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harini, L</creatorcontrib><creatorcontrib>Lestari, H. P.</creatorcontrib><creatorcontrib>Caturiyati</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harini, L</au><au>Lestari, H. P.</au><au>Caturiyati</au><au>Andayani, Sri</au><au>Sahid</au><au>Wutsqa, Dhoriva Urwatul</au><au>Hartono</au><au>Retnowati, Endah</au><au>Kismiantini</au><au>Retnawati, Heri</au><au>Somerkoski, Brita</au><au>Abadi, Agus Maman</au><au>Sugiman</au><au>Setyaningrum, Wahyu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Some fixed point theorems in generalized modular metric space</atitle><btitle>AIP Conference Proceedings</btitle><date>2022-12-08</date><risdate>2022</risdate><volume>2575</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this paper, we discuss some properties of generalized modular metric spaces. This space was first introduced by Turkoglu and Manav in 2018. Later, we extend the concepts about contraction mappings in generalized modular metric spaces. We also develop a convexity structure and defined the N normal structure in this space.The results show us that if X is a complete modular metric space and TN is a contraction mapping then T has a unique fixed point.Moreover, we need the constant of generalized modular metric axiom should be less than or equal to 1 to guarantee the ball is closed. The closeness property of the ball is necessary to generate normal structure in generalized modular metric space. This normal structure property assures the existence of the fixed point of a nonexpansive mapping.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0107775</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2022, Vol.2575 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0107775
source AIP Journals Complete
subjects Convexity
Fixed points (mathematics)
Mapping
Metric space
Modular structures
title Some fixed point theorems in generalized modular metric space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A47%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Some%20fixed%20point%20theorems%20in%20generalized%20modular%20metric%20space&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Harini,%20L&rft.date=2022-12-08&rft.volume=2575&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0107775&rft_dat=%3Cproquest_scita%3E2748004210%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2748004210&rft_id=info:pmid/&rfr_iscdi=true