A neural network reduced order model for the elasticity problem

The work investigates two different approaches to solving the elasticity problem for material with inclusions. We apply the finite element method for the classic approach. Meanwhile, we also apply a neural network approach to construct a solver based on the solutions obtained firstly. This approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Grigorev, Aleksei, Grigorev, Aleksandr, Sivtsev, Petr, Stepanov, Sergei
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2528
creator Grigorev, Aleksei
Grigorev, Aleksandr
Sivtsev, Petr
Stepanov, Sergei
description The work investigates two different approaches to solving the elasticity problem for material with inclusions. We apply the finite element method for the classic approach. Meanwhile, we also apply a neural network approach to construct a solver based on the solutions obtained firstly. This approach consists in training convolutional neural networks on a family of solutions represented as images. Based on the results of applying the two approaches, the effectiveness and applicability of the methods for solving the problem are demonstrated.
doi_str_mv 10.1063/5.0107117
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0107117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2710011543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2437-11149d3ee572a22b8d4302bd20520ecdc18c2ad8fdc548c42bd3990a6b96c9473</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_0HAm7B1Jh-bzUlK8QsKXhS8hWySxa3bpmZ3lf57Iy148_Qe5pl5hpeQS4QZQslv5AwQFKI6IhOUEgtVYnlMJgBaFEzwt1Ny1vcrAKaVqibkdk43YUy2yzF8x_RBU_CjC57G5EOi6-hDR5uY6PAeaOhsP7SuHXZ0m2LdhfU5OWls14eLQ07J6_3dy-KxWD4_PC3my8JlqSoQUWjPQ5CKWcbqygsOrPYMJIPgvMPKMeurxjspKifyiGsNtqx16bRQfEqu9nez93MM_WBWcUybrDRMIQCiFDxT13uqzz_aoY0bs03t2qad-YrJSHMox2x98x-MYH7b_FvgP7KoZTc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2710011543</pqid></control><display><type>conference_proceeding</type><title>A neural network reduced order model for the elasticity problem</title><source>AIP Journals Complete</source><creator>Grigorev, Aleksei ; Grigorev, Aleksandr ; Sivtsev, Petr ; Stepanov, Sergei</creator><contributor>Sharin, Egor P. ; Grigor’ev, Yuri M.</contributor><creatorcontrib>Grigorev, Aleksei ; Grigorev, Aleksandr ; Sivtsev, Petr ; Stepanov, Sergei ; Sharin, Egor P. ; Grigor’ev, Yuri M.</creatorcontrib><description>The work investigates two different approaches to solving the elasticity problem for material with inclusions. We apply the finite element method for the classic approach. Meanwhile, we also apply a neural network approach to construct a solver based on the solutions obtained firstly. This approach consists in training convolutional neural networks on a family of solutions represented as images. Based on the results of applying the two approaches, the effectiveness and applicability of the methods for solving the problem are demonstrated.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0107117</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial neural networks ; Elasticity ; Finite element method ; Inclusions ; Reduced order models</subject><ispartof>AIP conference proceedings, 2022, Vol.2528 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2437-11149d3ee572a22b8d4302bd20520ecdc18c2ad8fdc548c42bd3990a6b96c9473</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0107117$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Sharin, Egor P.</contributor><contributor>Grigor’ev, Yuri M.</contributor><creatorcontrib>Grigorev, Aleksei</creatorcontrib><creatorcontrib>Grigorev, Aleksandr</creatorcontrib><creatorcontrib>Sivtsev, Petr</creatorcontrib><creatorcontrib>Stepanov, Sergei</creatorcontrib><title>A neural network reduced order model for the elasticity problem</title><title>AIP conference proceedings</title><description>The work investigates two different approaches to solving the elasticity problem for material with inclusions. We apply the finite element method for the classic approach. Meanwhile, we also apply a neural network approach to construct a solver based on the solutions obtained firstly. This approach consists in training convolutional neural networks on a family of solutions represented as images. Based on the results of applying the two approaches, the effectiveness and applicability of the methods for solving the problem are demonstrated.</description><subject>Artificial neural networks</subject><subject>Elasticity</subject><subject>Finite element method</subject><subject>Inclusions</subject><subject>Reduced order models</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_0HAm7B1Jh-bzUlK8QsKXhS8hWySxa3bpmZ3lf57Iy148_Qe5pl5hpeQS4QZQslv5AwQFKI6IhOUEgtVYnlMJgBaFEzwt1Ny1vcrAKaVqibkdk43YUy2yzF8x_RBU_CjC57G5EOi6-hDR5uY6PAeaOhsP7SuHXZ0m2LdhfU5OWls14eLQ07J6_3dy-KxWD4_PC3my8JlqSoQUWjPQ5CKWcbqygsOrPYMJIPgvMPKMeurxjspKifyiGsNtqx16bRQfEqu9nez93MM_WBWcUybrDRMIQCiFDxT13uqzz_aoY0bs03t2qad-YrJSHMox2x98x-MYH7b_FvgP7KoZTc</recordid><startdate>20220906</startdate><enddate>20220906</enddate><creator>Grigorev, Aleksei</creator><creator>Grigorev, Aleksandr</creator><creator>Sivtsev, Petr</creator><creator>Stepanov, Sergei</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20220906</creationdate><title>A neural network reduced order model for the elasticity problem</title><author>Grigorev, Aleksei ; Grigorev, Aleksandr ; Sivtsev, Petr ; Stepanov, Sergei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2437-11149d3ee572a22b8d4302bd20520ecdc18c2ad8fdc548c42bd3990a6b96c9473</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Elasticity</topic><topic>Finite element method</topic><topic>Inclusions</topic><topic>Reduced order models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grigorev, Aleksei</creatorcontrib><creatorcontrib>Grigorev, Aleksandr</creatorcontrib><creatorcontrib>Sivtsev, Petr</creatorcontrib><creatorcontrib>Stepanov, Sergei</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grigorev, Aleksei</au><au>Grigorev, Aleksandr</au><au>Sivtsev, Petr</au><au>Stepanov, Sergei</au><au>Sharin, Egor P.</au><au>Grigor’ev, Yuri M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A neural network reduced order model for the elasticity problem</atitle><btitle>AIP conference proceedings</btitle><date>2022-09-06</date><risdate>2022</risdate><volume>2528</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The work investigates two different approaches to solving the elasticity problem for material with inclusions. We apply the finite element method for the classic approach. Meanwhile, we also apply a neural network approach to construct a solver based on the solutions obtained firstly. This approach consists in training convolutional neural networks on a family of solutions represented as images. Based on the results of applying the two approaches, the effectiveness and applicability of the methods for solving the problem are demonstrated.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0107117</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2022, Vol.2528 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0107117
source AIP Journals Complete
subjects Artificial neural networks
Elasticity
Finite element method
Inclusions
Reduced order models
title A neural network reduced order model for the elasticity problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A26%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20neural%20network%20reduced%20order%20model%20for%20the%20elasticity%20problem&rft.btitle=AIP%20conference%20proceedings&rft.au=Grigorev,%20Aleksei&rft.date=2022-09-06&rft.volume=2528&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0107117&rft_dat=%3Cproquest_scita%3E2710011543%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2710011543&rft_id=info:pmid/&rfr_iscdi=true