Non-instantaneous single- and multi-impulsive advection-diffusion-reaction equations

In the present article, we study singular limits of weak energy solutions to non-instantaneous single-and multi-impulsive advection-diffusion-reaction equation as impulsive source terms collapse to time-dependent the Dirac delta-functions, i.e., to instant impulses. We establish that the limiting fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP Conference Proceedings 2022-09, Vol.2528 (1)
Hauptverfasser: Kuznetsov, Ivan, Sazhenkov, Sergey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title AIP Conference Proceedings
container_volume 2528
creator Kuznetsov, Ivan
Sazhenkov, Sergey
description In the present article, we study singular limits of weak energy solutions to non-instantaneous single-and multi-impulsive advection-diffusion-reaction equation as impulsive source terms collapse to time-dependent the Dirac delta-functions, i.e., to instant impulses. We establish that the limiting functions are the solutions of the instantaneous impulsive advection-diffusion-reaction equations. Besides, in the multi-impulsive case we find the effect of transition to an equilibrium as a number of impulses grows infinitely. The results can be applied to further modeling of such processes as frost-quakes in glaciology.
doi_str_mv 10.1063/5.0106234
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0106234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2710011630</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1334-e8be79922ae3d0b68481eed571785903c345fb112bfe19f90c68bbdc2751bca93</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI4u_AcFd0LG3KRpmqUMvmDQzQjuQtIkkqHTdpqm4L-38wB3woVzuHz3wUHoFsgCSMEe-IJMSll-hmbAOWBRQHGOZoTIHNOcfV2iqxg3hFApRDlD6_e2waGJg26mcm2KWQzNd-1wphubbVM9BBy2XapjGF2m7eiqIUwzNnif4t71Th9amdslvTfxGl14XUd3c9I5-nx-Wi9f8erj5W35uMIdMJZjVxonpKRUO2aJKcq8BOcsFyBKLgmrWM69AaDGO5BekqoojbEVFRxMpSWbo7vj3q5vd8nFQW3a1DfTSUUFEAJQMDJR90cqVmE4PKi6Pmx1_6OAqH1qiqtTav_BY9v_gaqznv0CLpxukw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2710011630</pqid></control><display><type>article</type><title>Non-instantaneous single- and multi-impulsive advection-diffusion-reaction equations</title><source>AIP Journals Complete</source><creator>Kuznetsov, Ivan ; Sazhenkov, Sergey</creator><contributor>Sharin, Egor P. ; Grigor’ev, Yuri M.</contributor><creatorcontrib>Kuznetsov, Ivan ; Sazhenkov, Sergey ; Sharin, Egor P. ; Grigor’ev, Yuri M.</creatorcontrib><description>In the present article, we study singular limits of weak energy solutions to non-instantaneous single-and multi-impulsive advection-diffusion-reaction equation as impulsive source terms collapse to time-dependent the Dirac delta-functions, i.e., to instant impulses. We establish that the limiting functions are the solutions of the instantaneous impulsive advection-diffusion-reaction equations. Besides, in the multi-impulsive case we find the effect of transition to an equilibrium as a number of impulses grows infinitely. The results can be applied to further modeling of such processes as frost-quakes in glaciology.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0106234</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Advection ; Diffusion ; Glaciology ; Impulses ; Reaction-diffusion equations</subject><ispartof>AIP Conference Proceedings, 2022-09, Vol.2528 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0106234$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Sharin, Egor P.</contributor><contributor>Grigor’ev, Yuri M.</contributor><creatorcontrib>Kuznetsov, Ivan</creatorcontrib><creatorcontrib>Sazhenkov, Sergey</creatorcontrib><title>Non-instantaneous single- and multi-impulsive advection-diffusion-reaction equations</title><title>AIP Conference Proceedings</title><description>In the present article, we study singular limits of weak energy solutions to non-instantaneous single-and multi-impulsive advection-diffusion-reaction equation as impulsive source terms collapse to time-dependent the Dirac delta-functions, i.e., to instant impulses. We establish that the limiting functions are the solutions of the instantaneous impulsive advection-diffusion-reaction equations. Besides, in the multi-impulsive case we find the effect of transition to an equilibrium as a number of impulses grows infinitely. The results can be applied to further modeling of such processes as frost-quakes in glaciology.</description><subject>Advection</subject><subject>Diffusion</subject><subject>Glaciology</subject><subject>Impulses</subject><subject>Reaction-diffusion equations</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI4u_AcFd0LG3KRpmqUMvmDQzQjuQtIkkqHTdpqm4L-38wB3woVzuHz3wUHoFsgCSMEe-IJMSll-hmbAOWBRQHGOZoTIHNOcfV2iqxg3hFApRDlD6_e2waGJg26mcm2KWQzNd-1wphubbVM9BBy2XapjGF2m7eiqIUwzNnif4t71Th9amdslvTfxGl14XUd3c9I5-nx-Wi9f8erj5W35uMIdMJZjVxonpKRUO2aJKcq8BOcsFyBKLgmrWM69AaDGO5BekqoojbEVFRxMpSWbo7vj3q5vd8nFQW3a1DfTSUUFEAJQMDJR90cqVmE4PKi6Pmx1_6OAqH1qiqtTav_BY9v_gaqznv0CLpxukw</recordid><startdate>20220906</startdate><enddate>20220906</enddate><creator>Kuznetsov, Ivan</creator><creator>Sazhenkov, Sergey</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20220906</creationdate><title>Non-instantaneous single- and multi-impulsive advection-diffusion-reaction equations</title><author>Kuznetsov, Ivan ; Sazhenkov, Sergey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1334-e8be79922ae3d0b68481eed571785903c345fb112bfe19f90c68bbdc2751bca93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Advection</topic><topic>Diffusion</topic><topic>Glaciology</topic><topic>Impulses</topic><topic>Reaction-diffusion equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuznetsov, Ivan</creatorcontrib><creatorcontrib>Sazhenkov, Sergey</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIP Conference Proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuznetsov, Ivan</au><au>Sazhenkov, Sergey</au><au>Sharin, Egor P.</au><au>Grigor’ev, Yuri M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-instantaneous single- and multi-impulsive advection-diffusion-reaction equations</atitle><jtitle>AIP Conference Proceedings</jtitle><date>2022-09-06</date><risdate>2022</risdate><volume>2528</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In the present article, we study singular limits of weak energy solutions to non-instantaneous single-and multi-impulsive advection-diffusion-reaction equation as impulsive source terms collapse to time-dependent the Dirac delta-functions, i.e., to instant impulses. We establish that the limiting functions are the solutions of the instantaneous impulsive advection-diffusion-reaction equations. Besides, in the multi-impulsive case we find the effect of transition to an equilibrium as a number of impulses grows infinitely. The results can be applied to further modeling of such processes as frost-quakes in glaciology.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0106234</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2022-09, Vol.2528 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0106234
source AIP Journals Complete
subjects Advection
Diffusion
Glaciology
Impulses
Reaction-diffusion equations
title Non-instantaneous single- and multi-impulsive advection-diffusion-reaction equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-instantaneous%20single-%20and%20multi-impulsive%20advection-diffusion-reaction%20equations&rft.jtitle=AIP%20Conference%20Proceedings&rft.au=Kuznetsov,%20Ivan&rft.date=2022-09-06&rft.volume=2528&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0106234&rft_dat=%3Cproquest_scita%3E2710011630%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2710011630&rft_id=info:pmid/&rfr_iscdi=true