Comment on “Linear stability of a rotating channel flow subjected to a static magnetic field” [Phys. Fluids 34, 054116 (2022)]

Recently, Sengupta and Ghosh [“Linear stability of a rotating channel flow subjected to a static magnetic field,” Phys. Fluids 34, 054116 (2022)] published a linear stability analysis of a pressure-driven channel flow, which is subject to rotation around a spanwise axis and a uniform magnetic field...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2022-09, Vol.34 (9)
1. Verfasser: Priede, Jānis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Physics of fluids (1994)
container_volume 34
creator Priede, Jānis
description Recently, Sengupta and Ghosh [“Linear stability of a rotating channel flow subjected to a static magnetic field,” Phys. Fluids 34, 054116 (2022)] published a linear stability analysis of a pressure-driven channel flow, which is subject to rotation around a spanwise axis and a uniform magnetic field applied in the same direction. Unfortunately, the formulation of the magnetohydrodynamic part of the problem contains an elementary error, which makes the obtained results unphysical. The error is due to unfounded omission of the electric potential contribution in the induced electric current which, thus, does not satisfy the charge conservation.
doi_str_mv 10.1063/5.0103619
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0103619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718446418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-579e7223ec4e3ecad7719b6b30bd346c24b493cff806a52c8d2c5f79cd278fbf3</originalsourceid><addsrcrecordid>eNp90M1KAzEQB_BFFKzVg28Q8KLi1nxtsnuUYlUo6EFPIks2m7RbtklNskpvxefQl-uTuEuLHgQvM3P4McP8o-gYwQGCjFwmA4ggYSjbiXoIplnMGWO73cxhzBhB-9GB9zMIIckw60UfQzufKxOANWC9-hxXRgkHfBBFVVdhCawGAjgbRKjMBMipMEbVQNf2HfimmCkZVAmCbZHvjARzMTGqG3Sl6nK9-gLPD9OlH4BR3VSlB4ReAJhQhBg4xRDjs5fDaE-L2qujbe9HT6Prx-FtPL6_uRtejWNJGA5xwjPFMSZKUtUWUXKOsoIVBBYloUxiWtCMSK1TyESCZVpimWieyRLzVBea9KOTzd6Fs6-N8iGf2caZ9mSOOUopZRSlrTrbKOms907pfOGquXDLHMG8izhP8m3ErT3fWC-r7ntrfvCbdb8wX5T6P_x38zeDVYnC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718446418</pqid></control><display><type>article</type><title>Comment on “Linear stability of a rotating channel flow subjected to a static magnetic field” [Phys. Fluids 34, 054116 (2022)]</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Priede, Jānis</creator><creatorcontrib>Priede, Jānis</creatorcontrib><description>Recently, Sengupta and Ghosh [“Linear stability of a rotating channel flow subjected to a static magnetic field,” Phys. Fluids 34, 054116 (2022)] published a linear stability analysis of a pressure-driven channel flow, which is subject to rotation around a spanwise axis and a uniform magnetic field applied in the same direction. Unfortunately, the formulation of the magnetohydrodynamic part of the problem contains an elementary error, which makes the obtained results unphysical. The error is due to unfounded omission of the electric potential contribution in the induced electric current which, thus, does not satisfy the charge conservation.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0103619</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Channel flow ; Flow stability ; Fluid flow ; Magnetic fields ; Magnetohydrodynamics ; Rotation ; Stability analysis</subject><ispartof>Physics of fluids (1994), 2022-09, Vol.34 (9)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-579e7223ec4e3ecad7719b6b30bd346c24b493cff806a52c8d2c5f79cd278fbf3</citedby><cites>FETCH-LOGICAL-c362t-579e7223ec4e3ecad7719b6b30bd346c24b493cff806a52c8d2c5f79cd278fbf3</cites><orcidid>0000-0003-0930-3529</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Priede, Jānis</creatorcontrib><title>Comment on “Linear stability of a rotating channel flow subjected to a static magnetic field” [Phys. Fluids 34, 054116 (2022)]</title><title>Physics of fluids (1994)</title><description>Recently, Sengupta and Ghosh [“Linear stability of a rotating channel flow subjected to a static magnetic field,” Phys. Fluids 34, 054116 (2022)] published a linear stability analysis of a pressure-driven channel flow, which is subject to rotation around a spanwise axis and a uniform magnetic field applied in the same direction. Unfortunately, the formulation of the magnetohydrodynamic part of the problem contains an elementary error, which makes the obtained results unphysical. The error is due to unfounded omission of the electric potential contribution in the induced electric current which, thus, does not satisfy the charge conservation.</description><subject>Channel flow</subject><subject>Flow stability</subject><subject>Fluid flow</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamics</subject><subject>Rotation</subject><subject>Stability analysis</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEQB_BFFKzVg28Q8KLi1nxtsnuUYlUo6EFPIks2m7RbtklNskpvxefQl-uTuEuLHgQvM3P4McP8o-gYwQGCjFwmA4ggYSjbiXoIplnMGWO73cxhzBhB-9GB9zMIIckw60UfQzufKxOANWC9-hxXRgkHfBBFVVdhCawGAjgbRKjMBMipMEbVQNf2HfimmCkZVAmCbZHvjARzMTGqG3Sl6nK9-gLPD9OlH4BR3VSlB4ReAJhQhBg4xRDjs5fDaE-L2qujbe9HT6Prx-FtPL6_uRtejWNJGA5xwjPFMSZKUtUWUXKOsoIVBBYloUxiWtCMSK1TyESCZVpimWieyRLzVBea9KOTzd6Fs6-N8iGf2caZ9mSOOUopZRSlrTrbKOms907pfOGquXDLHMG8izhP8m3ErT3fWC-r7ntrfvCbdb8wX5T6P_x38zeDVYnC</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Priede, Jānis</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0930-3529</orcidid></search><sort><creationdate>202209</creationdate><title>Comment on “Linear stability of a rotating channel flow subjected to a static magnetic field” [Phys. Fluids 34, 054116 (2022)]</title><author>Priede, Jānis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-579e7223ec4e3ecad7719b6b30bd346c24b493cff806a52c8d2c5f79cd278fbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Channel flow</topic><topic>Flow stability</topic><topic>Fluid flow</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamics</topic><topic>Rotation</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Priede, Jānis</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Priede, Jānis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comment on “Linear stability of a rotating channel flow subjected to a static magnetic field” [Phys. Fluids 34, 054116 (2022)]</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2022-09</date><risdate>2022</risdate><volume>34</volume><issue>9</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Recently, Sengupta and Ghosh [“Linear stability of a rotating channel flow subjected to a static magnetic field,” Phys. Fluids 34, 054116 (2022)] published a linear stability analysis of a pressure-driven channel flow, which is subject to rotation around a spanwise axis and a uniform magnetic field applied in the same direction. Unfortunately, the formulation of the magnetohydrodynamic part of the problem contains an elementary error, which makes the obtained results unphysical. The error is due to unfounded omission of the electric potential contribution in the induced electric current which, thus, does not satisfy the charge conservation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0103619</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0003-0930-3529</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2022-09, Vol.34 (9)
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_5_0103619
source AIP Journals Complete; Alma/SFX Local Collection
subjects Channel flow
Flow stability
Fluid flow
Magnetic fields
Magnetohydrodynamics
Rotation
Stability analysis
title Comment on “Linear stability of a rotating channel flow subjected to a static magnetic field” [Phys. Fluids 34, 054116 (2022)]
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A16%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comment%20on%20%E2%80%9CLinear%20stability%20of%20a%20rotating%20channel%20flow%20subjected%20to%20a%20static%20magnetic%20field%E2%80%9D%20%5BPhys.%20Fluids%2034,%20054116%20(2022)%5D&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Priede,%20J%C4%81nis&rft.date=2022-09&rft.volume=34&rft.issue=9&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0103619&rft_dat=%3Cproquest_scita%3E2718446418%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718446418&rft_id=info:pmid/&rfr_iscdi=true