Comment on “Linear stability of a rotating channel flow subjected to a static magnetic field” [Phys. Fluids 34, 054116 (2022)]
Recently, Sengupta and Ghosh [“Linear stability of a rotating channel flow subjected to a static magnetic field,” Phys. Fluids 34, 054116 (2022)] published a linear stability analysis of a pressure-driven channel flow, which is subject to rotation around a spanwise axis and a uniform magnetic field...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2022-09, Vol.34 (9) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 34 |
creator | Priede, Jānis |
description | Recently, Sengupta and Ghosh [“Linear stability of a rotating channel flow subjected to a static magnetic field,” Phys. Fluids 34, 054116 (2022)] published a linear stability analysis of a pressure-driven channel flow, which is subject to rotation around a spanwise axis and a uniform magnetic field applied in the same direction. Unfortunately, the formulation of the magnetohydrodynamic part of the problem contains an elementary error, which makes the obtained results unphysical. The error is due to unfounded omission of the electric potential contribution in the induced electric current which, thus, does not satisfy the charge conservation. |
doi_str_mv | 10.1063/5.0103619 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0103619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718446418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-579e7223ec4e3ecad7719b6b30bd346c24b493cff806a52c8d2c5f79cd278fbf3</originalsourceid><addsrcrecordid>eNp90M1KAzEQB_BFFKzVg28Q8KLi1nxtsnuUYlUo6EFPIks2m7RbtklNskpvxefQl-uTuEuLHgQvM3P4McP8o-gYwQGCjFwmA4ggYSjbiXoIplnMGWO73cxhzBhB-9GB9zMIIckw60UfQzufKxOANWC9-hxXRgkHfBBFVVdhCawGAjgbRKjMBMipMEbVQNf2HfimmCkZVAmCbZHvjARzMTGqG3Sl6nK9-gLPD9OlH4BR3VSlB4ReAJhQhBg4xRDjs5fDaE-L2qujbe9HT6Prx-FtPL6_uRtejWNJGA5xwjPFMSZKUtUWUXKOsoIVBBYloUxiWtCMSK1TyESCZVpimWieyRLzVBea9KOTzd6Fs6-N8iGf2caZ9mSOOUopZRSlrTrbKOms907pfOGquXDLHMG8izhP8m3ErT3fWC-r7ntrfvCbdb8wX5T6P_x38zeDVYnC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718446418</pqid></control><display><type>article</type><title>Comment on “Linear stability of a rotating channel flow subjected to a static magnetic field” [Phys. Fluids 34, 054116 (2022)]</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Priede, Jānis</creator><creatorcontrib>Priede, Jānis</creatorcontrib><description>Recently, Sengupta and Ghosh [“Linear stability of a rotating channel flow subjected to a static magnetic field,” Phys. Fluids 34, 054116 (2022)] published a linear stability analysis of a pressure-driven channel flow, which is subject to rotation around a spanwise axis and a uniform magnetic field applied in the same direction. Unfortunately, the formulation of the magnetohydrodynamic part of the problem contains an elementary error, which makes the obtained results unphysical. The error is due to unfounded omission of the electric potential contribution in the induced electric current which, thus, does not satisfy the charge conservation.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0103619</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Channel flow ; Flow stability ; Fluid flow ; Magnetic fields ; Magnetohydrodynamics ; Rotation ; Stability analysis</subject><ispartof>Physics of fluids (1994), 2022-09, Vol.34 (9)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-579e7223ec4e3ecad7719b6b30bd346c24b493cff806a52c8d2c5f79cd278fbf3</citedby><cites>FETCH-LOGICAL-c362t-579e7223ec4e3ecad7719b6b30bd346c24b493cff806a52c8d2c5f79cd278fbf3</cites><orcidid>0000-0003-0930-3529</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Priede, Jānis</creatorcontrib><title>Comment on “Linear stability of a rotating channel flow subjected to a static magnetic field” [Phys. Fluids 34, 054116 (2022)]</title><title>Physics of fluids (1994)</title><description>Recently, Sengupta and Ghosh [“Linear stability of a rotating channel flow subjected to a static magnetic field,” Phys. Fluids 34, 054116 (2022)] published a linear stability analysis of a pressure-driven channel flow, which is subject to rotation around a spanwise axis and a uniform magnetic field applied in the same direction. Unfortunately, the formulation of the magnetohydrodynamic part of the problem contains an elementary error, which makes the obtained results unphysical. The error is due to unfounded omission of the electric potential contribution in the induced electric current which, thus, does not satisfy the charge conservation.</description><subject>Channel flow</subject><subject>Flow stability</subject><subject>Fluid flow</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamics</subject><subject>Rotation</subject><subject>Stability analysis</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEQB_BFFKzVg28Q8KLi1nxtsnuUYlUo6EFPIks2m7RbtklNskpvxefQl-uTuEuLHgQvM3P4McP8o-gYwQGCjFwmA4ggYSjbiXoIplnMGWO73cxhzBhB-9GB9zMIIckw60UfQzufKxOANWC9-hxXRgkHfBBFVVdhCawGAjgbRKjMBMipMEbVQNf2HfimmCkZVAmCbZHvjARzMTGqG3Sl6nK9-gLPD9OlH4BR3VSlB4ReAJhQhBg4xRDjs5fDaE-L2qujbe9HT6Prx-FtPL6_uRtejWNJGA5xwjPFMSZKUtUWUXKOsoIVBBYloUxiWtCMSK1TyESCZVpimWieyRLzVBea9KOTzd6Fs6-N8iGf2caZ9mSOOUopZRSlrTrbKOms907pfOGquXDLHMG8izhP8m3ErT3fWC-r7ntrfvCbdb8wX5T6P_x38zeDVYnC</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Priede, Jānis</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0930-3529</orcidid></search><sort><creationdate>202209</creationdate><title>Comment on “Linear stability of a rotating channel flow subjected to a static magnetic field” [Phys. Fluids 34, 054116 (2022)]</title><author>Priede, Jānis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-579e7223ec4e3ecad7719b6b30bd346c24b493cff806a52c8d2c5f79cd278fbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Channel flow</topic><topic>Flow stability</topic><topic>Fluid flow</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamics</topic><topic>Rotation</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Priede, Jānis</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Priede, Jānis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comment on “Linear stability of a rotating channel flow subjected to a static magnetic field” [Phys. Fluids 34, 054116 (2022)]</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2022-09</date><risdate>2022</risdate><volume>34</volume><issue>9</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Recently, Sengupta and Ghosh [“Linear stability of a rotating channel flow subjected to a static magnetic field,” Phys. Fluids 34, 054116 (2022)] published a linear stability analysis of a pressure-driven channel flow, which is subject to rotation around a spanwise axis and a uniform magnetic field applied in the same direction. Unfortunately, the formulation of the magnetohydrodynamic part of the problem contains an elementary error, which makes the obtained results unphysical. The error is due to unfounded omission of the electric potential contribution in the induced electric current which, thus, does not satisfy the charge conservation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0103619</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0003-0930-3529</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2022-09, Vol.34 (9) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0103619 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Channel flow Flow stability Fluid flow Magnetic fields Magnetohydrodynamics Rotation Stability analysis |
title | Comment on “Linear stability of a rotating channel flow subjected to a static magnetic field” [Phys. Fluids 34, 054116 (2022)] |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A16%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comment%20on%20%E2%80%9CLinear%20stability%20of%20a%20rotating%20channel%20flow%20subjected%20to%20a%20static%20magnetic%20field%E2%80%9D%20%5BPhys.%20Fluids%2034,%20054116%20(2022)%5D&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Priede,%20J%C4%81nis&rft.date=2022-09&rft.volume=34&rft.issue=9&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0103619&rft_dat=%3Cproquest_scita%3E2718446418%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718446418&rft_id=info:pmid/&rfr_iscdi=true |