From the Nash–Kuiper theorem of isometric embeddings to the Euler equations for steady fluid motions: Analogues, examples, and extensions

Direct linkages between regular or irregular isometric embeddings of surfaces and steady compressible or incompressible fluid dynamics are investigated in this paper. For a surface (M, g) isometrically embedded in R3, we construct a mapping that sends the second fundamental form of the embedding to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2023-01, Vol.64 (1), Article Paper No. 011511, 29
Hauptverfasser: Li, Siran, Slemrod, Marshall
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of mathematical physics
container_volume 64
creator Li, Siran
Slemrod, Marshall
description Direct linkages between regular or irregular isometric embeddings of surfaces and steady compressible or incompressible fluid dynamics are investigated in this paper. For a surface (M, g) isometrically embedded in R3, we construct a mapping that sends the second fundamental form of the embedding to the density, velocity, and pressure of steady fluid flows on (M, g). From a Partial Differential Equations perspective, this mapping sends solutions to the Gauss–Codazzi equations to the steady Euler equations. Several families of special solutions of physical or geometrical significance are studied in detail, including the Chaplygin gas on standard and flat tori as well as the irregular isometric embeddings of the flat torus. We also discuss tentative extensions to multiple dimensions.
doi_str_mv 10.1063/5.0100212
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0100212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2769410080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-c73f7c46e55e321c619c781a06e7875e5e616f3560538bb5d0ca15b4295297863</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOF4WvkHAlWKdJG3S1N0g3nDQja5LJj0dI23TSVLRnXuXvqFPYucigqirc_v-n8OP0B4lx5SIeMiPCSWEUbaGBpTILEoFl-to0O9YxBIpN9GW94-EUCqTZIDezp2tcXgAfKP8w8fr-3VnWnDzjXVQY1ti420NwRmNoZ5AUZhm6nGwC9FZV_UwzDoVjG08Lq3DPoAqXnBZdabAtV0cTvCoUZWdduCPMDyruq3mnWqKfgrQ-Dm0gzZKVXnYXdVtdH9-dnd6GY1vL65OR-NIx4KFSKdxmepEAOcQM6oFzXQqqSICUply4CCoKGMuCI_lZMILohXlk4RlnGWpFPE22l_6ts7O-o9C_mg71__nc5aKLOkDlKSnDpaUdtZ7B2XeOlMr95JTks-zznm-yrpnhz9YbcIikuCUqX5VHC4V_ov81_5P-Mm6bzBvizL-BLaAnfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2769410080</pqid></control><display><type>article</type><title>From the Nash–Kuiper theorem of isometric embeddings to the Euler equations for steady fluid motions: Analogues, examples, and extensions</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Li, Siran ; Slemrod, Marshall</creator><creatorcontrib>Li, Siran ; Slemrod, Marshall</creatorcontrib><description>Direct linkages between regular or irregular isometric embeddings of surfaces and steady compressible or incompressible fluid dynamics are investigated in this paper. For a surface (M, g) isometrically embedded in R3, we construct a mapping that sends the second fundamental form of the embedding to the density, velocity, and pressure of steady fluid flows on (M, g). From a Partial Differential Equations perspective, this mapping sends solutions to the Gauss–Codazzi equations to the steady Euler equations. Several families of special solutions of physical or geometrical significance are studied in detail, including the Chaplygin gas on standard and flat tori as well as the irregular isometric embeddings of the flat torus. We also discuss tentative extensions to multiple dimensions.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0100212</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Chaplygin gas ; Compressibility ; Embedding ; Euler-Lagrange equation ; Eulers equations ; Fluid dynamics ; Fluid flow ; Incompressible flow ; Incompressible fluids ; Mapping ; Mathematical analysis ; Partial differential equations ; Physics ; Toruses</subject><ispartof>Journal of mathematical physics, 2023-01, Vol.64 (1), Article Paper No. 011511, 29</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-c73f7c46e55e321c619c781a06e7875e5e616f3560538bb5d0ca15b4295297863</citedby><cites>FETCH-LOGICAL-c362t-c73f7c46e55e321c619c781a06e7875e5e616f3560538bb5d0ca15b4295297863</cites><orcidid>0000-0003-4283-273X ; 0000-0002-0514-9467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0100212$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Li, Siran</creatorcontrib><creatorcontrib>Slemrod, Marshall</creatorcontrib><title>From the Nash–Kuiper theorem of isometric embeddings to the Euler equations for steady fluid motions: Analogues, examples, and extensions</title><title>Journal of mathematical physics</title><description>Direct linkages between regular or irregular isometric embeddings of surfaces and steady compressible or incompressible fluid dynamics are investigated in this paper. For a surface (M, g) isometrically embedded in R3, we construct a mapping that sends the second fundamental form of the embedding to the density, velocity, and pressure of steady fluid flows on (M, g). From a Partial Differential Equations perspective, this mapping sends solutions to the Gauss–Codazzi equations to the steady Euler equations. Several families of special solutions of physical or geometrical significance are studied in detail, including the Chaplygin gas on standard and flat tori as well as the irregular isometric embeddings of the flat torus. We also discuss tentative extensions to multiple dimensions.</description><subject>Chaplygin gas</subject><subject>Compressibility</subject><subject>Embedding</subject><subject>Euler-Lagrange equation</subject><subject>Eulers equations</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Incompressible fluids</subject><subject>Mapping</subject><subject>Mathematical analysis</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Toruses</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOF4WvkHAlWKdJG3S1N0g3nDQja5LJj0dI23TSVLRnXuXvqFPYucigqirc_v-n8OP0B4lx5SIeMiPCSWEUbaGBpTILEoFl-to0O9YxBIpN9GW94-EUCqTZIDezp2tcXgAfKP8w8fr-3VnWnDzjXVQY1ti420NwRmNoZ5AUZhm6nGwC9FZV_UwzDoVjG08Lq3DPoAqXnBZdabAtV0cTvCoUZWdduCPMDyruq3mnWqKfgrQ-Dm0gzZKVXnYXdVtdH9-dnd6GY1vL65OR-NIx4KFSKdxmepEAOcQM6oFzXQqqSICUply4CCoKGMuCI_lZMILohXlk4RlnGWpFPE22l_6ts7O-o9C_mg71__nc5aKLOkDlKSnDpaUdtZ7B2XeOlMr95JTks-zznm-yrpnhz9YbcIikuCUqX5VHC4V_ov81_5P-Mm6bzBvizL-BLaAnfQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Li, Siran</creator><creator>Slemrod, Marshall</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4283-273X</orcidid><orcidid>https://orcid.org/0000-0002-0514-9467</orcidid></search><sort><creationdate>20230101</creationdate><title>From the Nash–Kuiper theorem of isometric embeddings to the Euler equations for steady fluid motions: Analogues, examples, and extensions</title><author>Li, Siran ; Slemrod, Marshall</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-c73f7c46e55e321c619c781a06e7875e5e616f3560538bb5d0ca15b4295297863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chaplygin gas</topic><topic>Compressibility</topic><topic>Embedding</topic><topic>Euler-Lagrange equation</topic><topic>Eulers equations</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Incompressible fluids</topic><topic>Mapping</topic><topic>Mathematical analysis</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Siran</creatorcontrib><creatorcontrib>Slemrod, Marshall</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Siran</au><au>Slemrod, Marshall</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From the Nash–Kuiper theorem of isometric embeddings to the Euler equations for steady fluid motions: Analogues, examples, and extensions</atitle><jtitle>Journal of mathematical physics</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>64</volume><issue>1</issue><artnum>Paper No. 011511, 29</artnum><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>Direct linkages between regular or irregular isometric embeddings of surfaces and steady compressible or incompressible fluid dynamics are investigated in this paper. For a surface (M, g) isometrically embedded in R3, we construct a mapping that sends the second fundamental form of the embedding to the density, velocity, and pressure of steady fluid flows on (M, g). From a Partial Differential Equations perspective, this mapping sends solutions to the Gauss–Codazzi equations to the steady Euler equations. Several families of special solutions of physical or geometrical significance are studied in detail, including the Chaplygin gas on standard and flat tori as well as the irregular isometric embeddings of the flat torus. We also discuss tentative extensions to multiple dimensions.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0100212</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0003-4283-273X</orcidid><orcidid>https://orcid.org/0000-0002-0514-9467</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2023-01, Vol.64 (1), Article Paper No. 011511, 29
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_5_0100212
source AIP Journals Complete; Alma/SFX Local Collection
subjects Chaplygin gas
Compressibility
Embedding
Euler-Lagrange equation
Eulers equations
Fluid dynamics
Fluid flow
Incompressible flow
Incompressible fluids
Mapping
Mathematical analysis
Partial differential equations
Physics
Toruses
title From the Nash–Kuiper theorem of isometric embeddings to the Euler equations for steady fluid motions: Analogues, examples, and extensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A29%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20the%20Nash%E2%80%93Kuiper%20theorem%20of%20isometric%20embeddings%20to%20the%20Euler%20equations%20for%20steady%20fluid%20motions:%20Analogues,%20examples,%20and%20extensions&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Li,%20Siran&rft.date=2023-01-01&rft.volume=64&rft.issue=1&rft.artnum=Paper%20No.%20011511,%2029&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0100212&rft_dat=%3Cproquest_cross%3E2769410080%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2769410080&rft_id=info:pmid/&rfr_iscdi=true