Influence of salt on the formation and separation of droplet interface bilayers
Phospholipid bilayers are a major component of the cell membrane that is in contact with physiological electrolyte solutions including salt ions. The effect of salt on the phospholipid bilayer mechanics is an active research area due to its implications for cellular function and viability. In this m...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2022-06, Vol.34 (6) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 34 |
creator | Chandran Suja, Vineeth Amirthalingam, Layaa Fuller, Gerald G. |
description | Phospholipid bilayers are a major component of the cell membrane that is in contact with physiological electrolyte solutions including salt ions. The effect of salt on the phospholipid bilayer mechanics is an active research area due to its implications for cellular function and viability. In this manuscript, we utilize droplet interface bilayers (DIBs), a bilayer formed artificially between two aqueous droplets, to unravel the bilayer formation and separation mechanics with a combination of experiments and numerical modeling under the effects of K+, Na+, Li+, Ca2+, and Mg2+. Initially, we measured the interfacial tension and the interfacial complex viscosity of lipid monolayers at a flat oil–aqueous interface and show that both properties are sensitive to salt concentration, ion size, and valency. Subsequently, we measured DIB formation rates and show that the characteristic bilayer formation velocity scales with the ratio of the interfacial tension to the interfacial viscosity. Next, we subjected the system to a step strain by separating the drops in a stepwise manner. By tracking the evolution of the bilayer contact angle and radius, we show that salt influences the bilayer separation mechanics, including the decay of the contact angle, the decay of the bilayer radius, and the corresponding relaxation time. Finally, we explain the salt effect on the observed bilayer separation by means of a mathematical model comprising the Young–Laplace and evolution equations. |
doi_str_mv | 10.1063/5.0096591 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0096591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2673692960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-d9c2fb7f6bc5773283dc768eabe5b2144156c2bc7d69ac16c6d31e94369a72393</originalsourceid><addsrcrecordid>eNp90EtLAzEQB_AgCtbqwW-w4Elhax7dSXOU4qNQ6EXPIZsHbtlu1iQr9NubukUPgqfJH36ZYQaha4JnBAO7r2YYC6gEOUETghei5ABwenhzXAIwco4uYtxijJmgMEGbVefawXbaFt4VUbWp8F2R3m3hfNip1OSkOlNE26swxuxM8H1rU9F0yQan8ue6adXehniJzpxqo7061il6e3p8Xb6U683zavmwLjWjPJVGaOpq7qDWFeeMLpjRHBZW1baqKZnPSQWa1pobEEoT0GAYsWLOcuSUCTZFN2PfPviPwcYkt34IXR4pKfDMqACc1e2odPAxButkH5qdCntJsDzcS1byeK9s70YbdZO-N_3Bnz78Qtkb9x_-2_kLRLR41w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673692960</pqid></control><display><type>article</type><title>Influence of salt on the formation and separation of droplet interface bilayers</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Chandran Suja, Vineeth ; Amirthalingam, Layaa ; Fuller, Gerald G.</creator><creatorcontrib>Chandran Suja, Vineeth ; Amirthalingam, Layaa ; Fuller, Gerald G.</creatorcontrib><description>Phospholipid bilayers are a major component of the cell membrane that is in contact with physiological electrolyte solutions including salt ions. The effect of salt on the phospholipid bilayer mechanics is an active research area due to its implications for cellular function and viability. In this manuscript, we utilize droplet interface bilayers (DIBs), a bilayer formed artificially between two aqueous droplets, to unravel the bilayer formation and separation mechanics with a combination of experiments and numerical modeling under the effects of K+, Na+, Li+, Ca2+, and Mg2+. Initially, we measured the interfacial tension and the interfacial complex viscosity of lipid monolayers at a flat oil–aqueous interface and show that both properties are sensitive to salt concentration, ion size, and valency. Subsequently, we measured DIB formation rates and show that the characteristic bilayer formation velocity scales with the ratio of the interfacial tension to the interfacial viscosity. Next, we subjected the system to a step strain by separating the drops in a stepwise manner. By tracking the evolution of the bilayer contact angle and radius, we show that salt influences the bilayer separation mechanics, including the decay of the contact angle, the decay of the bilayer radius, and the corresponding relaxation time. Finally, we explain the salt effect on the observed bilayer separation by means of a mathematical model comprising the Young–Laplace and evolution equations.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0096591</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Calcium ions ; Cell membranes ; Contact angle ; Decay ; Droplets ; Evolution ; Fluid dynamics ; Lipids ; Mathematical models ; Mechanics ; Mechanics (physics) ; Phospholipids ; Physics ; Physiological effects ; Relaxation time ; Salt effect ; Separation ; Surface tension ; Viscosity</subject><ispartof>Physics of fluids (1994), 2022-06, Vol.34 (6)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-d9c2fb7f6bc5773283dc768eabe5b2144156c2bc7d69ac16c6d31e94369a72393</citedby><cites>FETCH-LOGICAL-c327t-d9c2fb7f6bc5773283dc768eabe5b2144156c2bc7d69ac16c6d31e94369a72393</cites><orcidid>0000-0002-2924-053X ; 0000-0002-3406-7655 ; 0000-0002-0175-5216</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,795,4513,27929,27930</link.rule.ids></links><search><creatorcontrib>Chandran Suja, Vineeth</creatorcontrib><creatorcontrib>Amirthalingam, Layaa</creatorcontrib><creatorcontrib>Fuller, Gerald G.</creatorcontrib><title>Influence of salt on the formation and separation of droplet interface bilayers</title><title>Physics of fluids (1994)</title><description>Phospholipid bilayers are a major component of the cell membrane that is in contact with physiological electrolyte solutions including salt ions. The effect of salt on the phospholipid bilayer mechanics is an active research area due to its implications for cellular function and viability. In this manuscript, we utilize droplet interface bilayers (DIBs), a bilayer formed artificially between two aqueous droplets, to unravel the bilayer formation and separation mechanics with a combination of experiments and numerical modeling under the effects of K+, Na+, Li+, Ca2+, and Mg2+. Initially, we measured the interfacial tension and the interfacial complex viscosity of lipid monolayers at a flat oil–aqueous interface and show that both properties are sensitive to salt concentration, ion size, and valency. Subsequently, we measured DIB formation rates and show that the characteristic bilayer formation velocity scales with the ratio of the interfacial tension to the interfacial viscosity. Next, we subjected the system to a step strain by separating the drops in a stepwise manner. By tracking the evolution of the bilayer contact angle and radius, we show that salt influences the bilayer separation mechanics, including the decay of the contact angle, the decay of the bilayer radius, and the corresponding relaxation time. Finally, we explain the salt effect on the observed bilayer separation by means of a mathematical model comprising the Young–Laplace and evolution equations.</description><subject>Calcium ions</subject><subject>Cell membranes</subject><subject>Contact angle</subject><subject>Decay</subject><subject>Droplets</subject><subject>Evolution</subject><subject>Fluid dynamics</subject><subject>Lipids</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Mechanics (physics)</subject><subject>Phospholipids</subject><subject>Physics</subject><subject>Physiological effects</subject><subject>Relaxation time</subject><subject>Salt effect</subject><subject>Separation</subject><subject>Surface tension</subject><subject>Viscosity</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90EtLAzEQB_AgCtbqwW-w4Elhax7dSXOU4qNQ6EXPIZsHbtlu1iQr9NubukUPgqfJH36ZYQaha4JnBAO7r2YYC6gEOUETghei5ABwenhzXAIwco4uYtxijJmgMEGbVefawXbaFt4VUbWp8F2R3m3hfNip1OSkOlNE26swxuxM8H1rU9F0yQan8ue6adXehniJzpxqo7061il6e3p8Xb6U683zavmwLjWjPJVGaOpq7qDWFeeMLpjRHBZW1baqKZnPSQWa1pobEEoT0GAYsWLOcuSUCTZFN2PfPviPwcYkt34IXR4pKfDMqACc1e2odPAxButkH5qdCntJsDzcS1byeK9s70YbdZO-N_3Bnz78Qtkb9x_-2_kLRLR41w</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Chandran Suja, Vineeth</creator><creator>Amirthalingam, Layaa</creator><creator>Fuller, Gerald G.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2924-053X</orcidid><orcidid>https://orcid.org/0000-0002-3406-7655</orcidid><orcidid>https://orcid.org/0000-0002-0175-5216</orcidid></search><sort><creationdate>202206</creationdate><title>Influence of salt on the formation and separation of droplet interface bilayers</title><author>Chandran Suja, Vineeth ; Amirthalingam, Layaa ; Fuller, Gerald G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-d9c2fb7f6bc5773283dc768eabe5b2144156c2bc7d69ac16c6d31e94369a72393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Calcium ions</topic><topic>Cell membranes</topic><topic>Contact angle</topic><topic>Decay</topic><topic>Droplets</topic><topic>Evolution</topic><topic>Fluid dynamics</topic><topic>Lipids</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Mechanics (physics)</topic><topic>Phospholipids</topic><topic>Physics</topic><topic>Physiological effects</topic><topic>Relaxation time</topic><topic>Salt effect</topic><topic>Separation</topic><topic>Surface tension</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandran Suja, Vineeth</creatorcontrib><creatorcontrib>Amirthalingam, Layaa</creatorcontrib><creatorcontrib>Fuller, Gerald G.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandran Suja, Vineeth</au><au>Amirthalingam, Layaa</au><au>Fuller, Gerald G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of salt on the formation and separation of droplet interface bilayers</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2022-06</date><risdate>2022</risdate><volume>34</volume><issue>6</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Phospholipid bilayers are a major component of the cell membrane that is in contact with physiological electrolyte solutions including salt ions. The effect of salt on the phospholipid bilayer mechanics is an active research area due to its implications for cellular function and viability. In this manuscript, we utilize droplet interface bilayers (DIBs), a bilayer formed artificially between two aqueous droplets, to unravel the bilayer formation and separation mechanics with a combination of experiments and numerical modeling under the effects of K+, Na+, Li+, Ca2+, and Mg2+. Initially, we measured the interfacial tension and the interfacial complex viscosity of lipid monolayers at a flat oil–aqueous interface and show that both properties are sensitive to salt concentration, ion size, and valency. Subsequently, we measured DIB formation rates and show that the characteristic bilayer formation velocity scales with the ratio of the interfacial tension to the interfacial viscosity. Next, we subjected the system to a step strain by separating the drops in a stepwise manner. By tracking the evolution of the bilayer contact angle and radius, we show that salt influences the bilayer separation mechanics, including the decay of the contact angle, the decay of the bilayer radius, and the corresponding relaxation time. Finally, we explain the salt effect on the observed bilayer separation by means of a mathematical model comprising the Young–Laplace and evolution equations.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0096591</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2924-053X</orcidid><orcidid>https://orcid.org/0000-0002-3406-7655</orcidid><orcidid>https://orcid.org/0000-0002-0175-5216</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2022-06, Vol.34 (6) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0096591 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Calcium ions Cell membranes Contact angle Decay Droplets Evolution Fluid dynamics Lipids Mathematical models Mechanics Mechanics (physics) Phospholipids Physics Physiological effects Relaxation time Salt effect Separation Surface tension Viscosity |
title | Influence of salt on the formation and separation of droplet interface bilayers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T09%3A53%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20salt%20on%20the%20formation%20and%20separation%20of%20droplet%20interface%20bilayers&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Chandran%20Suja,%20Vineeth&rft.date=2022-06&rft.volume=34&rft.issue=6&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0096591&rft_dat=%3Cproquest_scita%3E2673692960%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673692960&rft_id=info:pmid/&rfr_iscdi=true |