Donor doping of corundum (AlxGa1−x)2O3
Corundum (AlxGa1−x)2O3 alloys have been proposed as a candidate ultrawide-bandgap oxide for a number of applications, but doping is unexplored. We examine the prospects for n-type doping with H, Si, Ge, Sn, Hf, Zr, and Ta in corundum (AlxGa1−x)2O3 alloys using first-principles calculations. All of t...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2022-07, Vol.121 (4) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 121 |
creator | Wickramaratne, Darshana Varley, Joel B. Lyons, John L. |
description | Corundum (AlxGa1−x)2O3 alloys have been proposed as a candidate ultrawide-bandgap oxide for a number of applications, but doping is unexplored. We examine the prospects for n-type doping with H, Si, Ge, Sn, Hf, Zr, and Ta in corundum (AlxGa1−x)2O3 alloys using first-principles calculations. All of the dopants are shallow donors in corundum Ga2O3. In the (AlxGa1−x)2O3 alloy, they transition from shallow to deep donors at Al compositions that are unique to each donor. Si and Hf remain shallow donors up to the highest Al contents in corundum (AlxGa1−x)2O3 alloys and are still shallow even as the (AlxGa1−x)2O3 bandgap exceeds 6.5 eV. Finally, we address the detrimental role of cation vacancies as compensating deep acceptors and suggest that doping in a hydrogen-rich environment under cation-rich conditions can be used to overcome this problem. |
doi_str_mv | 10.1063/5.0096394 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0096394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696297776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3044-7f32952424441163901d8160b00a91d11e646523f5ef68c77df8b71ecbdb009d3</originalsourceid><addsrcrecordid>eNp90M9KAzEQBvAgCtbqwTdY9NIKWzObbLI5lqpVKPSi57DNH93SbmqyK_UNPPuIPokpW_QgeBoGfsx8fAidAx4BZuQ6H2EsGBH0APUAc54SgOIQ9TDGJGUih2N0EsIyrnlGSA8NblztfKLdpqqfE2cT5Xxb63adDMar7bSEr4_P7TCbk1N0ZMtVMGf72UdPd7ePk_t0Np8-TMazVBFMacotyUSe0YxSChCDYNAFMLzAuBSgAQyjLL62ubGsUJxrWyw4GLXQkQhN-uiiu-tCU8mgqsaoF-Xq2qhGQlFwKvKILju08e61NaGRS9f6OuaSGRMsE5xzFtWwU8q7ELyxcuOrdenfJWC5a0vmct9WtFed3X0sm8rVP_jN-V8oN9r-h_9e_ga7h3Qe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696297776</pqid></control><display><type>article</type><title>Donor doping of corundum (AlxGa1−x)2O3</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wickramaratne, Darshana ; Varley, Joel B. ; Lyons, John L.</creator><creatorcontrib>Wickramaratne, Darshana ; Varley, Joel B. ; Lyons, John L. ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><description>Corundum (AlxGa1−x)2O3 alloys have been proposed as a candidate ultrawide-bandgap oxide for a number of applications, but doping is unexplored. We examine the prospects for n-type doping with H, Si, Ge, Sn, Hf, Zr, and Ta in corundum (AlxGa1−x)2O3 alloys using first-principles calculations. All of the dopants are shallow donors in corundum Ga2O3. In the (AlxGa1−x)2O3 alloy, they transition from shallow to deep donors at Al compositions that are unique to each donor. Si and Hf remain shallow donors up to the highest Al contents in corundum (AlxGa1−x)2O3 alloys and are still shallow even as the (AlxGa1−x)2O3 bandgap exceeds 6.5 eV. Finally, we address the detrimental role of cation vacancies as compensating deep acceptors and suggest that doping in a hydrogen-rich environment under cation-rich conditions can be used to overcome this problem.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0096394</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aluminum ; Applied physics ; Cations ; Corundum ; Doping ; Energy gap ; First principles ; Gallium oxides ; Germanium ; Hafnium ; MATERIALS SCIENCE ; Silicon ; Tin ; Zirconium</subject><ispartof>Applied physics letters, 2022-07, Vol.121 (4)</ispartof><rights>Public Domain</rights><rights>2022 Public Domain Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3044-7f32952424441163901d8160b00a91d11e646523f5ef68c77df8b71ecbdb009d3</citedby><cites>FETCH-LOGICAL-c3044-7f32952424441163901d8160b00a91d11e646523f5ef68c77df8b71ecbdb009d3</cites><orcidid>0000-0002-5384-5248 ; 0000-0002-1663-1507 ; 0000-0001-8023-3055 ; 0000000180233055 ; 0000000216631507 ; 0000000253845248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0096394$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1887495$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wickramaratne, Darshana</creatorcontrib><creatorcontrib>Varley, Joel B.</creatorcontrib><creatorcontrib>Lyons, John L.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><title>Donor doping of corundum (AlxGa1−x)2O3</title><title>Applied physics letters</title><description>Corundum (AlxGa1−x)2O3 alloys have been proposed as a candidate ultrawide-bandgap oxide for a number of applications, but doping is unexplored. We examine the prospects for n-type doping with H, Si, Ge, Sn, Hf, Zr, and Ta in corundum (AlxGa1−x)2O3 alloys using first-principles calculations. All of the dopants are shallow donors in corundum Ga2O3. In the (AlxGa1−x)2O3 alloy, they transition from shallow to deep donors at Al compositions that are unique to each donor. Si and Hf remain shallow donors up to the highest Al contents in corundum (AlxGa1−x)2O3 alloys and are still shallow even as the (AlxGa1−x)2O3 bandgap exceeds 6.5 eV. Finally, we address the detrimental role of cation vacancies as compensating deep acceptors and suggest that doping in a hydrogen-rich environment under cation-rich conditions can be used to overcome this problem.</description><subject>Aluminum</subject><subject>Applied physics</subject><subject>Cations</subject><subject>Corundum</subject><subject>Doping</subject><subject>Energy gap</subject><subject>First principles</subject><subject>Gallium oxides</subject><subject>Germanium</subject><subject>Hafnium</subject><subject>MATERIALS SCIENCE</subject><subject>Silicon</subject><subject>Tin</subject><subject>Zirconium</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90M9KAzEQBvAgCtbqwTdY9NIKWzObbLI5lqpVKPSi57DNH93SbmqyK_UNPPuIPokpW_QgeBoGfsx8fAidAx4BZuQ6H2EsGBH0APUAc54SgOIQ9TDGJGUih2N0EsIyrnlGSA8NblztfKLdpqqfE2cT5Xxb63adDMar7bSEr4_P7TCbk1N0ZMtVMGf72UdPd7ePk_t0Np8-TMazVBFMacotyUSe0YxSChCDYNAFMLzAuBSgAQyjLL62ubGsUJxrWyw4GLXQkQhN-uiiu-tCU8mgqsaoF-Xq2qhGQlFwKvKILju08e61NaGRS9f6OuaSGRMsE5xzFtWwU8q7ELyxcuOrdenfJWC5a0vmct9WtFed3X0sm8rVP_jN-V8oN9r-h_9e_ga7h3Qe</recordid><startdate>20220725</startdate><enddate>20220725</enddate><creator>Wickramaratne, Darshana</creator><creator>Varley, Joel B.</creator><creator>Lyons, John L.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5384-5248</orcidid><orcidid>https://orcid.org/0000-0002-1663-1507</orcidid><orcidid>https://orcid.org/0000-0001-8023-3055</orcidid><orcidid>https://orcid.org/0000000180233055</orcidid><orcidid>https://orcid.org/0000000216631507</orcidid><orcidid>https://orcid.org/0000000253845248</orcidid></search><sort><creationdate>20220725</creationdate><title>Donor doping of corundum (AlxGa1−x)2O3</title><author>Wickramaratne, Darshana ; Varley, Joel B. ; Lyons, John L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3044-7f32952424441163901d8160b00a91d11e646523f5ef68c77df8b71ecbdb009d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum</topic><topic>Applied physics</topic><topic>Cations</topic><topic>Corundum</topic><topic>Doping</topic><topic>Energy gap</topic><topic>First principles</topic><topic>Gallium oxides</topic><topic>Germanium</topic><topic>Hafnium</topic><topic>MATERIALS SCIENCE</topic><topic>Silicon</topic><topic>Tin</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wickramaratne, Darshana</creatorcontrib><creatorcontrib>Varley, Joel B.</creatorcontrib><creatorcontrib>Lyons, John L.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wickramaratne, Darshana</au><au>Varley, Joel B.</au><au>Lyons, John L.</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Donor doping of corundum (AlxGa1−x)2O3</atitle><jtitle>Applied physics letters</jtitle><date>2022-07-25</date><risdate>2022</risdate><volume>121</volume><issue>4</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Corundum (AlxGa1−x)2O3 alloys have been proposed as a candidate ultrawide-bandgap oxide for a number of applications, but doping is unexplored. We examine the prospects for n-type doping with H, Si, Ge, Sn, Hf, Zr, and Ta in corundum (AlxGa1−x)2O3 alloys using first-principles calculations. All of the dopants are shallow donors in corundum Ga2O3. In the (AlxGa1−x)2O3 alloy, they transition from shallow to deep donors at Al compositions that are unique to each donor. Si and Hf remain shallow donors up to the highest Al contents in corundum (AlxGa1−x)2O3 alloys and are still shallow even as the (AlxGa1−x)2O3 bandgap exceeds 6.5 eV. Finally, we address the detrimental role of cation vacancies as compensating deep acceptors and suggest that doping in a hydrogen-rich environment under cation-rich conditions can be used to overcome this problem.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0096394</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5384-5248</orcidid><orcidid>https://orcid.org/0000-0002-1663-1507</orcidid><orcidid>https://orcid.org/0000-0001-8023-3055</orcidid><orcidid>https://orcid.org/0000000180233055</orcidid><orcidid>https://orcid.org/0000000216631507</orcidid><orcidid>https://orcid.org/0000000253845248</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2022-07, Vol.121 (4) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0096394 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Aluminum Applied physics Cations Corundum Doping Energy gap First principles Gallium oxides Germanium Hafnium MATERIALS SCIENCE Silicon Tin Zirconium |
title | Donor doping of corundum (AlxGa1−x)2O3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A04%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Donor%20doping%20of%20corundum%20(AlxGa1%E2%88%92x)2O3&rft.jtitle=Applied%20physics%20letters&rft.au=Wickramaratne,%20Darshana&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2022-07-25&rft.volume=121&rft.issue=4&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0096394&rft_dat=%3Cproquest_scita%3E2696297776%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696297776&rft_id=info:pmid/&rfr_iscdi=true |