Bessel beam induced deep-penetrating bioimaging and self-monitored heating using Nd/Yb heavily doped nanocrystals

Biological probes facilitate optical imaging and disease diagnosis and treatment. However, the large absorption and scattering loss in the tissue highly limit the depth during the application. In the present research, an NIR-I bioprobing system, which utilizes the Bessel beam to excite heavily dopin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2022-07, Vol.121 (4)
Hauptverfasser: Ning, Danyang, Xu, Li, Zhu, Yin, Li, Dongyu, Jiang, Haili, Carvajal, Joan Josep, Li, Hanyang, Ren, Jing, Liu, Lu, Zhang, Jianzhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Applied physics letters
container_volume 121
creator Ning, Danyang
Xu, Li
Zhu, Yin
Li, Dongyu
Jiang, Haili
Carvajal, Joan Josep
Li, Hanyang
Ren, Jing
Liu, Lu
Zhang, Jianzhong
description Biological probes facilitate optical imaging and disease diagnosis and treatment. However, the large absorption and scattering loss in the tissue highly limit the depth during the application. In the present research, an NIR-I bioprobing system, which utilizes the Bessel beam to excite heavily doping nanocrystals, has been developed for deep tissue applications. On the one hand, the capillary mode selection method generates the Bessel excitation beam, lowering the excitation energy loss. On the other hand, a strong energy harvest of NaYbF4:90%Nd nanocrystals enables effective fluorescence and heat generation upon 800 nm excitation. By considering the advantages of Bessel excitation and heavily doping nanocrystals, up to ∼3 cm penetration depth for ex vivo bioimaging and the potential self-monitored photothermal treatment are demonstrated. The resultant bioprobing system allows deep tissue imaging and photothermal therapy, showcasing broad prospects in medical research and clinical applications.
doi_str_mv 10.1063/5.0095439
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0095439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2694063331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-60f8cd288d912a4e65edbb8ea91405f9e20980967f4fcf7f53258d219b2920193</originalsourceid><addsrcrecordid>eNqd0E1LwzAYB_AgCs7pwW9Q8KTQLS9N2xx1zBcYetGDp5A2T2bHlnRJO9i3N6UD717yJOGXJzx_hG4JnhGcszmfYSx4xsQZmhBcFCkjpDxHE4wxS3PBySW6CmETj5wyNkH7JwgBtkkFapc0Vvc16EQDtGkLFjqvusauk6pxzU6th62yOokPTLpztumcj_wHRtWHYX3X8-9quDs022OiXRuFVdbV_hg6tQ3X6MLEAjenOkVfz8vPxWu6-nh5Wzyu0prRoktzbMpa07LUglCVQc5BV1UJSpAMcyOAYlFikRcmM7UpDGeUl5oSUVFBMRFsiu7Gvq13-x5CJzeu9zZ-KWkushgWYySq-1HV3oXgwcjWx1H9URIsh0Qll6dEo30YbaibLo7s7P_wwfk_KFtt2C-G5YUN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2694063331</pqid></control><display><type>article</type><title>Bessel beam induced deep-penetrating bioimaging and self-monitored heating using Nd/Yb heavily doped nanocrystals</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ning, Danyang ; Xu, Li ; Zhu, Yin ; Li, Dongyu ; Jiang, Haili ; Carvajal, Joan Josep ; Li, Hanyang ; Ren, Jing ; Liu, Lu ; Zhang, Jianzhong</creator><creatorcontrib>Ning, Danyang ; Xu, Li ; Zhu, Yin ; Li, Dongyu ; Jiang, Haili ; Carvajal, Joan Josep ; Li, Hanyang ; Ren, Jing ; Liu, Lu ; Zhang, Jianzhong</creatorcontrib><description>Biological probes facilitate optical imaging and disease diagnosis and treatment. However, the large absorption and scattering loss in the tissue highly limit the depth during the application. In the present research, an NIR-I bioprobing system, which utilizes the Bessel beam to excite heavily doping nanocrystals, has been developed for deep tissue applications. On the one hand, the capillary mode selection method generates the Bessel excitation beam, lowering the excitation energy loss. On the other hand, a strong energy harvest of NaYbF4:90%Nd nanocrystals enables effective fluorescence and heat generation upon 800 nm excitation. By considering the advantages of Bessel excitation and heavily doping nanocrystals, up to ∼3 cm penetration depth for ex vivo bioimaging and the potential self-monitored photothermal treatment are demonstrated. The resultant bioprobing system allows deep tissue imaging and photothermal therapy, showcasing broad prospects in medical research and clinical applications.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0095439</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Beams (radiation) ; Doping ; Energy harvesting ; Excitation ; Health services ; Heat generation ; Medical imaging ; Medical research ; Modal choice ; Nanocrystals ; Penetration depth</subject><ispartof>Applied physics letters, 2022-07, Vol.121 (4)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-60f8cd288d912a4e65edbb8ea91405f9e20980967f4fcf7f53258d219b2920193</citedby><cites>FETCH-LOGICAL-c327t-60f8cd288d912a4e65edbb8ea91405f9e20980967f4fcf7f53258d219b2920193</cites><orcidid>0000-0003-3516-004X ; 0000-0001-9657-484X ; 0000-0003-3001-7754 ; 0000-0001-9744-6006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0095439$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Ning, Danyang</creatorcontrib><creatorcontrib>Xu, Li</creatorcontrib><creatorcontrib>Zhu, Yin</creatorcontrib><creatorcontrib>Li, Dongyu</creatorcontrib><creatorcontrib>Jiang, Haili</creatorcontrib><creatorcontrib>Carvajal, Joan Josep</creatorcontrib><creatorcontrib>Li, Hanyang</creatorcontrib><creatorcontrib>Ren, Jing</creatorcontrib><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Zhang, Jianzhong</creatorcontrib><title>Bessel beam induced deep-penetrating bioimaging and self-monitored heating using Nd/Yb heavily doped nanocrystals</title><title>Applied physics letters</title><description>Biological probes facilitate optical imaging and disease diagnosis and treatment. However, the large absorption and scattering loss in the tissue highly limit the depth during the application. In the present research, an NIR-I bioprobing system, which utilizes the Bessel beam to excite heavily doping nanocrystals, has been developed for deep tissue applications. On the one hand, the capillary mode selection method generates the Bessel excitation beam, lowering the excitation energy loss. On the other hand, a strong energy harvest of NaYbF4:90%Nd nanocrystals enables effective fluorescence and heat generation upon 800 nm excitation. By considering the advantages of Bessel excitation and heavily doping nanocrystals, up to ∼3 cm penetration depth for ex vivo bioimaging and the potential self-monitored photothermal treatment are demonstrated. The resultant bioprobing system allows deep tissue imaging and photothermal therapy, showcasing broad prospects in medical research and clinical applications.</description><subject>Applied physics</subject><subject>Beams (radiation)</subject><subject>Doping</subject><subject>Energy harvesting</subject><subject>Excitation</subject><subject>Health services</subject><subject>Heat generation</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Modal choice</subject><subject>Nanocrystals</subject><subject>Penetration depth</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LwzAYB_AgCs7pwW9Q8KTQLS9N2xx1zBcYetGDp5A2T2bHlnRJO9i3N6UD717yJOGXJzx_hG4JnhGcszmfYSx4xsQZmhBcFCkjpDxHE4wxS3PBySW6CmETj5wyNkH7JwgBtkkFapc0Vvc16EQDtGkLFjqvusauk6pxzU6th62yOokPTLpztumcj_wHRtWHYX3X8-9quDs022OiXRuFVdbV_hg6tQ3X6MLEAjenOkVfz8vPxWu6-nh5Wzyu0prRoktzbMpa07LUglCVQc5BV1UJSpAMcyOAYlFikRcmM7UpDGeUl5oSUVFBMRFsiu7Gvq13-x5CJzeu9zZ-KWkushgWYySq-1HV3oXgwcjWx1H9URIsh0Qll6dEo30YbaibLo7s7P_wwfk_KFtt2C-G5YUN</recordid><startdate>20220725</startdate><enddate>20220725</enddate><creator>Ning, Danyang</creator><creator>Xu, Li</creator><creator>Zhu, Yin</creator><creator>Li, Dongyu</creator><creator>Jiang, Haili</creator><creator>Carvajal, Joan Josep</creator><creator>Li, Hanyang</creator><creator>Ren, Jing</creator><creator>Liu, Lu</creator><creator>Zhang, Jianzhong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3516-004X</orcidid><orcidid>https://orcid.org/0000-0001-9657-484X</orcidid><orcidid>https://orcid.org/0000-0003-3001-7754</orcidid><orcidid>https://orcid.org/0000-0001-9744-6006</orcidid></search><sort><creationdate>20220725</creationdate><title>Bessel beam induced deep-penetrating bioimaging and self-monitored heating using Nd/Yb heavily doped nanocrystals</title><author>Ning, Danyang ; Xu, Li ; Zhu, Yin ; Li, Dongyu ; Jiang, Haili ; Carvajal, Joan Josep ; Li, Hanyang ; Ren, Jing ; Liu, Lu ; Zhang, Jianzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-60f8cd288d912a4e65edbb8ea91405f9e20980967f4fcf7f53258d219b2920193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Beams (radiation)</topic><topic>Doping</topic><topic>Energy harvesting</topic><topic>Excitation</topic><topic>Health services</topic><topic>Heat generation</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Modal choice</topic><topic>Nanocrystals</topic><topic>Penetration depth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ning, Danyang</creatorcontrib><creatorcontrib>Xu, Li</creatorcontrib><creatorcontrib>Zhu, Yin</creatorcontrib><creatorcontrib>Li, Dongyu</creatorcontrib><creatorcontrib>Jiang, Haili</creatorcontrib><creatorcontrib>Carvajal, Joan Josep</creatorcontrib><creatorcontrib>Li, Hanyang</creatorcontrib><creatorcontrib>Ren, Jing</creatorcontrib><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Zhang, Jianzhong</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ning, Danyang</au><au>Xu, Li</au><au>Zhu, Yin</au><au>Li, Dongyu</au><au>Jiang, Haili</au><au>Carvajal, Joan Josep</au><au>Li, Hanyang</au><au>Ren, Jing</au><au>Liu, Lu</au><au>Zhang, Jianzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bessel beam induced deep-penetrating bioimaging and self-monitored heating using Nd/Yb heavily doped nanocrystals</atitle><jtitle>Applied physics letters</jtitle><date>2022-07-25</date><risdate>2022</risdate><volume>121</volume><issue>4</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Biological probes facilitate optical imaging and disease diagnosis and treatment. However, the large absorption and scattering loss in the tissue highly limit the depth during the application. In the present research, an NIR-I bioprobing system, which utilizes the Bessel beam to excite heavily doping nanocrystals, has been developed for deep tissue applications. On the one hand, the capillary mode selection method generates the Bessel excitation beam, lowering the excitation energy loss. On the other hand, a strong energy harvest of NaYbF4:90%Nd nanocrystals enables effective fluorescence and heat generation upon 800 nm excitation. By considering the advantages of Bessel excitation and heavily doping nanocrystals, up to ∼3 cm penetration depth for ex vivo bioimaging and the potential self-monitored photothermal treatment are demonstrated. The resultant bioprobing system allows deep tissue imaging and photothermal therapy, showcasing broad prospects in medical research and clinical applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0095439</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3516-004X</orcidid><orcidid>https://orcid.org/0000-0001-9657-484X</orcidid><orcidid>https://orcid.org/0000-0003-3001-7754</orcidid><orcidid>https://orcid.org/0000-0001-9744-6006</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2022-07, Vol.121 (4)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_5_0095439
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Beams (radiation)
Doping
Energy harvesting
Excitation
Health services
Heat generation
Medical imaging
Medical research
Modal choice
Nanocrystals
Penetration depth
title Bessel beam induced deep-penetrating bioimaging and self-monitored heating using Nd/Yb heavily doped nanocrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A52%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bessel%20beam%20induced%20deep-penetrating%20bioimaging%20and%20self-monitored%20heating%20using%20Nd/Yb%20heavily%20doped%20nanocrystals&rft.jtitle=Applied%20physics%20letters&rft.au=Ning,%20Danyang&rft.date=2022-07-25&rft.volume=121&rft.issue=4&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0095439&rft_dat=%3Cproquest_scita%3E2694063331%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2694063331&rft_id=info:pmid/&rfr_iscdi=true