Complex dynamics in a Hopfield neural network under electromagnetic induction and electromagnetic radiation
Due to the potential difference between two neurons and that between the inner and outer membranes of an individual neuron, the neural network is always exposed to complex electromagnetic environments. In this paper, we utilize a hyperbolic-type memristor and a quadratic nonlinear memristor to emula...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2022-07, Vol.32 (7), p.073107-073107 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 073107 |
---|---|
container_issue | 7 |
container_start_page | 073107 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 32 |
creator | Wan, Qiuzhen Yan, Zidie Li, Fei Chen, Simiao Liu, Jiong |
description | Due to the potential difference between two neurons and that between the inner and outer membranes of an individual neuron, the neural network is always exposed to complex electromagnetic environments. In this paper, we utilize a hyperbolic-type memristor and a quadratic nonlinear memristor to emulate the effects of electromagnetic induction and electromagnetic radiation on a simple Hopfield neural network (HNN), respectively. The investigations show that the system possesses an origin equilibrium point, which is always unstable. Numerical results uncover that the HNN can present complex dynamic behaviors, evolving from regular motions to chaotic motions and finally to regular motions, as the memristors’ coupling strength changes. In particular, coexisting bifurcations will appear with respect to synaptic weights, which means bi-stable patterns. In addition, some physical results obtained from breadboard experiments confirm Matlab analyses and Multisim simulations. |
doi_str_mv | 10.1063/5.0095384 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0095384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696861395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-6b79dfa199424be97fa78a4d4c57d543f6eff89b0c24b37a07c0d0fb26e2a78a3</originalsourceid><addsrcrecordid>eNp90F1LwzAUBuAgCs7phf-g4I0Knflok-ZShjph4I1elzQfkq1tatKq-_embig48OqEvM85JAeAcwRnCFJyk88g5DkpsgMwQbDgKaMFPhzPeZaiHMJjcBLCCkKIMMknYD13TVfrz0RtWtFYGRLbJiJZuM5YXauk1YMXdSz9h_PrZGiV9omutey9a8RrvLcytqhB9tbFzlbtpV4oK8b0FBwZUQd9tqtT8HJ_9zxfpMunh8f57TKVmMM-pRXjygjEeYazSnNmBCtEpjKZM5VnxFBtTMErKGNMmIBMQgVNhanGoyRTcLmd23n3NujQl40NUte1aLUbQokppwVFJO5pCi7-0JUbfBtfF1WRMVJgPKqrrZLeheC1KTtvG-E3JYLluPYyL3drj_Z6a4O0_fe3f_C787-w7JT5D-9P_gKg3ZJm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684738225</pqid></control><display><type>article</type><title>Complex dynamics in a Hopfield neural network under electromagnetic induction and electromagnetic radiation</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wan, Qiuzhen ; Yan, Zidie ; Li, Fei ; Chen, Simiao ; Liu, Jiong</creator><creatorcontrib>Wan, Qiuzhen ; Yan, Zidie ; Li, Fei ; Chen, Simiao ; Liu, Jiong</creatorcontrib><description>Due to the potential difference between two neurons and that between the inner and outer membranes of an individual neuron, the neural network is always exposed to complex electromagnetic environments. In this paper, we utilize a hyperbolic-type memristor and a quadratic nonlinear memristor to emulate the effects of electromagnetic induction and electromagnetic radiation on a simple Hopfield neural network (HNN), respectively. The investigations show that the system possesses an origin equilibrium point, which is always unstable. Numerical results uncover that the HNN can present complex dynamic behaviors, evolving from regular motions to chaotic motions and finally to regular motions, as the memristors’ coupling strength changes. In particular, coexisting bifurcations will appear with respect to synaptic weights, which means bi-stable patterns. In addition, some physical results obtained from breadboard experiments confirm Matlab analyses and Multisim simulations.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/5.0095384</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Bifurcations ; Electromagnetic induction ; Electromagnetic radiation ; Memristors ; Neural networks</subject><ispartof>Chaos (Woodbury, N.Y.), 2022-07, Vol.32 (7), p.073107-073107</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-6b79dfa199424be97fa78a4d4c57d543f6eff89b0c24b37a07c0d0fb26e2a78a3</citedby><cites>FETCH-LOGICAL-c290t-6b79dfa199424be97fa78a4d4c57d543f6eff89b0c24b37a07c0d0fb26e2a78a3</cites><orcidid>0000-0003-1093-5582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Wan, Qiuzhen</creatorcontrib><creatorcontrib>Yan, Zidie</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Chen, Simiao</creatorcontrib><creatorcontrib>Liu, Jiong</creatorcontrib><title>Complex dynamics in a Hopfield neural network under electromagnetic induction and electromagnetic radiation</title><title>Chaos (Woodbury, N.Y.)</title><description>Due to the potential difference between two neurons and that between the inner and outer membranes of an individual neuron, the neural network is always exposed to complex electromagnetic environments. In this paper, we utilize a hyperbolic-type memristor and a quadratic nonlinear memristor to emulate the effects of electromagnetic induction and electromagnetic radiation on a simple Hopfield neural network (HNN), respectively. The investigations show that the system possesses an origin equilibrium point, which is always unstable. Numerical results uncover that the HNN can present complex dynamic behaviors, evolving from regular motions to chaotic motions and finally to regular motions, as the memristors’ coupling strength changes. In particular, coexisting bifurcations will appear with respect to synaptic weights, which means bi-stable patterns. In addition, some physical results obtained from breadboard experiments confirm Matlab analyses and Multisim simulations.</description><subject>Bifurcations</subject><subject>Electromagnetic induction</subject><subject>Electromagnetic radiation</subject><subject>Memristors</subject><subject>Neural networks</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90F1LwzAUBuAgCs7phf-g4I0Knflok-ZShjph4I1elzQfkq1tatKq-_embig48OqEvM85JAeAcwRnCFJyk88g5DkpsgMwQbDgKaMFPhzPeZaiHMJjcBLCCkKIMMknYD13TVfrz0RtWtFYGRLbJiJZuM5YXauk1YMXdSz9h_PrZGiV9omutey9a8RrvLcytqhB9tbFzlbtpV4oK8b0FBwZUQd9tqtT8HJ_9zxfpMunh8f57TKVmMM-pRXjygjEeYazSnNmBCtEpjKZM5VnxFBtTMErKGNMmIBMQgVNhanGoyRTcLmd23n3NujQl40NUte1aLUbQokppwVFJO5pCi7-0JUbfBtfF1WRMVJgPKqrrZLeheC1KTtvG-E3JYLluPYyL3drj_Z6a4O0_fe3f_C787-w7JT5D-9P_gKg3ZJm</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Wan, Qiuzhen</creator><creator>Yan, Zidie</creator><creator>Li, Fei</creator><creator>Chen, Simiao</creator><creator>Liu, Jiong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1093-5582</orcidid></search><sort><creationdate>202207</creationdate><title>Complex dynamics in a Hopfield neural network under electromagnetic induction and electromagnetic radiation</title><author>Wan, Qiuzhen ; Yan, Zidie ; Li, Fei ; Chen, Simiao ; Liu, Jiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-6b79dfa199424be97fa78a4d4c57d543f6eff89b0c24b37a07c0d0fb26e2a78a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bifurcations</topic><topic>Electromagnetic induction</topic><topic>Electromagnetic radiation</topic><topic>Memristors</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Qiuzhen</creatorcontrib><creatorcontrib>Yan, Zidie</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Chen, Simiao</creatorcontrib><creatorcontrib>Liu, Jiong</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Qiuzhen</au><au>Yan, Zidie</au><au>Li, Fei</au><au>Chen, Simiao</au><au>Liu, Jiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex dynamics in a Hopfield neural network under electromagnetic induction and electromagnetic radiation</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><date>2022-07</date><risdate>2022</risdate><volume>32</volume><issue>7</issue><spage>073107</spage><epage>073107</epage><pages>073107-073107</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>Due to the potential difference between two neurons and that between the inner and outer membranes of an individual neuron, the neural network is always exposed to complex electromagnetic environments. In this paper, we utilize a hyperbolic-type memristor and a quadratic nonlinear memristor to emulate the effects of electromagnetic induction and electromagnetic radiation on a simple Hopfield neural network (HNN), respectively. The investigations show that the system possesses an origin equilibrium point, which is always unstable. Numerical results uncover that the HNN can present complex dynamic behaviors, evolving from regular motions to chaotic motions and finally to regular motions, as the memristors’ coupling strength changes. In particular, coexisting bifurcations will appear with respect to synaptic weights, which means bi-stable patterns. In addition, some physical results obtained from breadboard experiments confirm Matlab analyses and Multisim simulations.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0095384</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1093-5582</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2022-07, Vol.32 (7), p.073107-073107 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0095384 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Bifurcations Electromagnetic induction Electromagnetic radiation Memristors Neural networks |
title | Complex dynamics in a Hopfield neural network under electromagnetic induction and electromagnetic radiation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A09%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20dynamics%20in%20a%20Hopfield%20neural%20network%20under%20electromagnetic%20induction%20and%20electromagnetic%20radiation&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Wan,%20Qiuzhen&rft.date=2022-07&rft.volume=32&rft.issue=7&rft.spage=073107&rft.epage=073107&rft.pages=073107-073107&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/5.0095384&rft_dat=%3Cproquest_scita%3E2696861395%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2684738225&rft_id=info:pmid/&rfr_iscdi=true |