Complex dynamics in a Hopfield neural network under electromagnetic induction and electromagnetic radiation

Due to the potential difference between two neurons and that between the inner and outer membranes of an individual neuron, the neural network is always exposed to complex electromagnetic environments. In this paper, we utilize a hyperbolic-type memristor and a quadratic nonlinear memristor to emula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2022-07, Vol.32 (7), p.073107-073107
Hauptverfasser: Wan, Qiuzhen, Yan, Zidie, Li, Fei, Chen, Simiao, Liu, Jiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 073107
container_issue 7
container_start_page 073107
container_title Chaos (Woodbury, N.Y.)
container_volume 32
creator Wan, Qiuzhen
Yan, Zidie
Li, Fei
Chen, Simiao
Liu, Jiong
description Due to the potential difference between two neurons and that between the inner and outer membranes of an individual neuron, the neural network is always exposed to complex electromagnetic environments. In this paper, we utilize a hyperbolic-type memristor and a quadratic nonlinear memristor to emulate the effects of electromagnetic induction and electromagnetic radiation on a simple Hopfield neural network (HNN), respectively. The investigations show that the system possesses an origin equilibrium point, which is always unstable. Numerical results uncover that the HNN can present complex dynamic behaviors, evolving from regular motions to chaotic motions and finally to regular motions, as the memristors’ coupling strength changes. In particular, coexisting bifurcations will appear with respect to synaptic weights, which means bi-stable patterns. In addition, some physical results obtained from breadboard experiments confirm Matlab analyses and Multisim simulations.
doi_str_mv 10.1063/5.0095384
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0095384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696861395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-6b79dfa199424be97fa78a4d4c57d543f6eff89b0c24b37a07c0d0fb26e2a78a3</originalsourceid><addsrcrecordid>eNp90F1LwzAUBuAgCs7phf-g4I0Knflok-ZShjph4I1elzQfkq1tatKq-_embig48OqEvM85JAeAcwRnCFJyk88g5DkpsgMwQbDgKaMFPhzPeZaiHMJjcBLCCkKIMMknYD13TVfrz0RtWtFYGRLbJiJZuM5YXauk1YMXdSz9h_PrZGiV9omutey9a8RrvLcytqhB9tbFzlbtpV4oK8b0FBwZUQd9tqtT8HJ_9zxfpMunh8f57TKVmMM-pRXjygjEeYazSnNmBCtEpjKZM5VnxFBtTMErKGNMmIBMQgVNhanGoyRTcLmd23n3NujQl40NUte1aLUbQokppwVFJO5pCi7-0JUbfBtfF1WRMVJgPKqrrZLeheC1KTtvG-E3JYLluPYyL3drj_Z6a4O0_fe3f_C787-w7JT5D-9P_gKg3ZJm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684738225</pqid></control><display><type>article</type><title>Complex dynamics in a Hopfield neural network under electromagnetic induction and electromagnetic radiation</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wan, Qiuzhen ; Yan, Zidie ; Li, Fei ; Chen, Simiao ; Liu, Jiong</creator><creatorcontrib>Wan, Qiuzhen ; Yan, Zidie ; Li, Fei ; Chen, Simiao ; Liu, Jiong</creatorcontrib><description>Due to the potential difference between two neurons and that between the inner and outer membranes of an individual neuron, the neural network is always exposed to complex electromagnetic environments. In this paper, we utilize a hyperbolic-type memristor and a quadratic nonlinear memristor to emulate the effects of electromagnetic induction and electromagnetic radiation on a simple Hopfield neural network (HNN), respectively. The investigations show that the system possesses an origin equilibrium point, which is always unstable. Numerical results uncover that the HNN can present complex dynamic behaviors, evolving from regular motions to chaotic motions and finally to regular motions, as the memristors’ coupling strength changes. In particular, coexisting bifurcations will appear with respect to synaptic weights, which means bi-stable patterns. In addition, some physical results obtained from breadboard experiments confirm Matlab analyses and Multisim simulations.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/5.0095384</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Bifurcations ; Electromagnetic induction ; Electromagnetic radiation ; Memristors ; Neural networks</subject><ispartof>Chaos (Woodbury, N.Y.), 2022-07, Vol.32 (7), p.073107-073107</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-6b79dfa199424be97fa78a4d4c57d543f6eff89b0c24b37a07c0d0fb26e2a78a3</citedby><cites>FETCH-LOGICAL-c290t-6b79dfa199424be97fa78a4d4c57d543f6eff89b0c24b37a07c0d0fb26e2a78a3</cites><orcidid>0000-0003-1093-5582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Wan, Qiuzhen</creatorcontrib><creatorcontrib>Yan, Zidie</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Chen, Simiao</creatorcontrib><creatorcontrib>Liu, Jiong</creatorcontrib><title>Complex dynamics in a Hopfield neural network under electromagnetic induction and electromagnetic radiation</title><title>Chaos (Woodbury, N.Y.)</title><description>Due to the potential difference between two neurons and that between the inner and outer membranes of an individual neuron, the neural network is always exposed to complex electromagnetic environments. In this paper, we utilize a hyperbolic-type memristor and a quadratic nonlinear memristor to emulate the effects of electromagnetic induction and electromagnetic radiation on a simple Hopfield neural network (HNN), respectively. The investigations show that the system possesses an origin equilibrium point, which is always unstable. Numerical results uncover that the HNN can present complex dynamic behaviors, evolving from regular motions to chaotic motions and finally to regular motions, as the memristors’ coupling strength changes. In particular, coexisting bifurcations will appear with respect to synaptic weights, which means bi-stable patterns. In addition, some physical results obtained from breadboard experiments confirm Matlab analyses and Multisim simulations.</description><subject>Bifurcations</subject><subject>Electromagnetic induction</subject><subject>Electromagnetic radiation</subject><subject>Memristors</subject><subject>Neural networks</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90F1LwzAUBuAgCs7phf-g4I0Knflok-ZShjph4I1elzQfkq1tatKq-_embig48OqEvM85JAeAcwRnCFJyk88g5DkpsgMwQbDgKaMFPhzPeZaiHMJjcBLCCkKIMMknYD13TVfrz0RtWtFYGRLbJiJZuM5YXauk1YMXdSz9h_PrZGiV9omutey9a8RrvLcytqhB9tbFzlbtpV4oK8b0FBwZUQd9tqtT8HJ_9zxfpMunh8f57TKVmMM-pRXjygjEeYazSnNmBCtEpjKZM5VnxFBtTMErKGNMmIBMQgVNhanGoyRTcLmd23n3NujQl40NUte1aLUbQokppwVFJO5pCi7-0JUbfBtfF1WRMVJgPKqrrZLeheC1KTtvG-E3JYLluPYyL3drj_Z6a4O0_fe3f_C787-w7JT5D-9P_gKg3ZJm</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Wan, Qiuzhen</creator><creator>Yan, Zidie</creator><creator>Li, Fei</creator><creator>Chen, Simiao</creator><creator>Liu, Jiong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1093-5582</orcidid></search><sort><creationdate>202207</creationdate><title>Complex dynamics in a Hopfield neural network under electromagnetic induction and electromagnetic radiation</title><author>Wan, Qiuzhen ; Yan, Zidie ; Li, Fei ; Chen, Simiao ; Liu, Jiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-6b79dfa199424be97fa78a4d4c57d543f6eff89b0c24b37a07c0d0fb26e2a78a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bifurcations</topic><topic>Electromagnetic induction</topic><topic>Electromagnetic radiation</topic><topic>Memristors</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Qiuzhen</creatorcontrib><creatorcontrib>Yan, Zidie</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Chen, Simiao</creatorcontrib><creatorcontrib>Liu, Jiong</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Qiuzhen</au><au>Yan, Zidie</au><au>Li, Fei</au><au>Chen, Simiao</au><au>Liu, Jiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex dynamics in a Hopfield neural network under electromagnetic induction and electromagnetic radiation</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><date>2022-07</date><risdate>2022</risdate><volume>32</volume><issue>7</issue><spage>073107</spage><epage>073107</epage><pages>073107-073107</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>Due to the potential difference between two neurons and that between the inner and outer membranes of an individual neuron, the neural network is always exposed to complex electromagnetic environments. In this paper, we utilize a hyperbolic-type memristor and a quadratic nonlinear memristor to emulate the effects of electromagnetic induction and electromagnetic radiation on a simple Hopfield neural network (HNN), respectively. The investigations show that the system possesses an origin equilibrium point, which is always unstable. Numerical results uncover that the HNN can present complex dynamic behaviors, evolving from regular motions to chaotic motions and finally to regular motions, as the memristors’ coupling strength changes. In particular, coexisting bifurcations will appear with respect to synaptic weights, which means bi-stable patterns. In addition, some physical results obtained from breadboard experiments confirm Matlab analyses and Multisim simulations.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0095384</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1093-5582</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2022-07, Vol.32 (7), p.073107-073107
issn 1054-1500
1089-7682
language eng
recordid cdi_scitation_primary_10_1063_5_0095384
source AIP Journals Complete; Alma/SFX Local Collection
subjects Bifurcations
Electromagnetic induction
Electromagnetic radiation
Memristors
Neural networks
title Complex dynamics in a Hopfield neural network under electromagnetic induction and electromagnetic radiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A09%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20dynamics%20in%20a%20Hopfield%20neural%20network%20under%20electromagnetic%20induction%20and%20electromagnetic%20radiation&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Wan,%20Qiuzhen&rft.date=2022-07&rft.volume=32&rft.issue=7&rft.spage=073107&rft.epage=073107&rft.pages=073107-073107&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/5.0095384&rft_dat=%3Cproquest_scita%3E2696861395%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2684738225&rft_id=info:pmid/&rfr_iscdi=true