Computational investigation of incident ion angles and material erosion at rough graphite and silicon carbide divertor surfaces
We present a computational investigation of the dependence of material erosion on the incident ion angle at rough graphite and silicon carbide divertor surfaces. Ion angle distributions (IADs) for D plasmas at NSTX-U and DIII-D divertors were calculated by an equation-of-motion model that traces the...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2022-10, Vol.29 (10) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 29 |
creator | Abe, S. Skinner, C. H. Liu, A. Garcia, J. Lin, Z. Bringuier, S. Abrams, T. Koel, B. E. |
description | We present a computational investigation of the dependence of material erosion on the incident ion angle at rough graphite and silicon carbide divertor surfaces. Ion angle distributions (IADs) for D plasmas at NSTX-U and DIII-D divertors were calculated by an equation-of-motion model that traces the ion trajectories in the sheath. Then, the effective sputtering yields and ion shadowed area fractions were calculated by a Monte Carlo micro-patterning and roughness code that applied the calculated IADs to surface topographic data that were obtained from optical confocal microscopy of rough graphite and SiC divertor surfaces from NSTX-U and DIII-D experiments. The calculations found that the effective sputtering yields, the sputtering pattern, and the shadowed area are determined by the detailed surface topology rather than the root mean square roughness RRMS, which represents deviations from a flat surface. The suppression of the effective sputtering yields for rough surfaces compared to the yield for a smooth surface was accounted for by the change of the mean local incident ion angle (LIIA) ⟨θ′⟩. The mean surface inclination angle distribution (SIAD) ⟨δ⟩ was found to be a useful parameter to estimate the LIIA from the calculated IADs. We report global empirical formulas for the mean LIIA and fraction of the area shadowed from the main ions for D plasmas for rough surfaces with B-field incident angles α = 85°–89° as a function of the mean SIAD ⟨δ⟩. We propose the use of the mean LIIA ⟨θ′⟩ to estimate the sputtering yield for rough surfaces from the angular dependence of the sputtering yield. |
doi_str_mv | 10.1063/5.0095155 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0095155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2720625230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-b916a11c31c8d483cd5f40e3576fda9831704887af7bb0cb4af08c956a25f8673</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhosouK4e_AdFTwpdJ23z0aMsfoHgRcFbSNOkm2W3qUm64Mm_bra76EHwNJnMkzcz7yTJOYIZAlLc4BlAhRHGB8kEAasySmh5uD1TyAgp34-TE--XAFASzCbJ19yu-yGIYGwnVqnpNsoH0455anW8kKZRXUi3uejalfIxNOlaBOVMfKGc9WMtpM4O7SJtnegXJqgR82ZlZKxK4eqokzZmo1ywLvWD00Iqf5ocabHy6mwfp8nb_d3r_DF7fnl4mt8-Z7JgVcjqChGBkCyQZE3JCtlgXYIqMCW6ERUrEIWSMSo0rWuQdSk0MFlhInKsGaHFNLnY6do4HvcyNigXsbNOycARq4CSPEKXO6h39mOIRvClHVz0xfOc5kBynBcQqasdJePo3inNe2fWwn1yBHy7BI75fgmRvd6x2x9HU3_gjXW_IO8b_R_8V_kbRWCXKA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720625230</pqid></control><display><type>article</type><title>Computational investigation of incident ion angles and material erosion at rough graphite and silicon carbide divertor surfaces</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Abe, S. ; Skinner, C. H. ; Liu, A. ; Garcia, J. ; Lin, Z. ; Bringuier, S. ; Abrams, T. ; Koel, B. E.</creator><creatorcontrib>Abe, S. ; Skinner, C. H. ; Liu, A. ; Garcia, J. ; Lin, Z. ; Bringuier, S. ; Abrams, T. ; Koel, B. E.</creatorcontrib><description>We present a computational investigation of the dependence of material erosion on the incident ion angle at rough graphite and silicon carbide divertor surfaces. Ion angle distributions (IADs) for D plasmas at NSTX-U and DIII-D divertors were calculated by an equation-of-motion model that traces the ion trajectories in the sheath. Then, the effective sputtering yields and ion shadowed area fractions were calculated by a Monte Carlo micro-patterning and roughness code that applied the calculated IADs to surface topographic data that were obtained from optical confocal microscopy of rough graphite and SiC divertor surfaces from NSTX-U and DIII-D experiments. The calculations found that the effective sputtering yields, the sputtering pattern, and the shadowed area are determined by the detailed surface topology rather than the root mean square roughness RRMS, which represents deviations from a flat surface. The suppression of the effective sputtering yields for rough surfaces compared to the yield for a smooth surface was accounted for by the change of the mean local incident ion angle (LIIA) ⟨θ′⟩. The mean surface inclination angle distribution (SIAD) ⟨δ⟩ was found to be a useful parameter to estimate the LIIA from the calculated IADs. We report global empirical formulas for the mean LIIA and fraction of the area shadowed from the main ions for D plasmas for rough surfaces with B-field incident angles α = 85°–89° as a function of the mean SIAD ⟨δ⟩. We propose the use of the mean LIIA ⟨θ′⟩ to estimate the sputtering yield for rough surfaces from the angular dependence of the sputtering yield.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0095155</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Divertors (fusion reactors) ; Flat surfaces ; Graphite ; Inclination angle ; Ion trajectories ; Parameter estimation ; Patterning ; Plasma physics ; Plasmas (physics) ; Roughness ; Sheaths ; Silicon carbide ; Sputtering ; Topology</subject><ispartof>Physics of plasmas, 2022-10, Vol.29 (10)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-b916a11c31c8d483cd5f40e3576fda9831704887af7bb0cb4af08c956a25f8673</citedby><cites>FETCH-LOGICAL-c389t-b916a11c31c8d483cd5f40e3576fda9831704887af7bb0cb4af08c956a25f8673</cites><orcidid>0000-0002-0032-4991 ; 0000-0002-1477-423X ; 0000-0002-0365-8137 ; 0000-0002-5936-9924 ; 0000-0002-1674-2418 ; 0000-0002-9605-6871 ; 0000-0001-6753-1437 ; 0000000296056871 ; 0000000259369924 ; 0000000167531437 ; 0000000200324991 ; 0000000216742418 ; 0000000203658137 ; 000000021477423X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0095155$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4509,27922,27923,76154</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1890762$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Abe, S.</creatorcontrib><creatorcontrib>Skinner, C. H.</creatorcontrib><creatorcontrib>Liu, A.</creatorcontrib><creatorcontrib>Garcia, J.</creatorcontrib><creatorcontrib>Lin, Z.</creatorcontrib><creatorcontrib>Bringuier, S.</creatorcontrib><creatorcontrib>Abrams, T.</creatorcontrib><creatorcontrib>Koel, B. E.</creatorcontrib><title>Computational investigation of incident ion angles and material erosion at rough graphite and silicon carbide divertor surfaces</title><title>Physics of plasmas</title><description>We present a computational investigation of the dependence of material erosion on the incident ion angle at rough graphite and silicon carbide divertor surfaces. Ion angle distributions (IADs) for D plasmas at NSTX-U and DIII-D divertors were calculated by an equation-of-motion model that traces the ion trajectories in the sheath. Then, the effective sputtering yields and ion shadowed area fractions were calculated by a Monte Carlo micro-patterning and roughness code that applied the calculated IADs to surface topographic data that were obtained from optical confocal microscopy of rough graphite and SiC divertor surfaces from NSTX-U and DIII-D experiments. The calculations found that the effective sputtering yields, the sputtering pattern, and the shadowed area are determined by the detailed surface topology rather than the root mean square roughness RRMS, which represents deviations from a flat surface. The suppression of the effective sputtering yields for rough surfaces compared to the yield for a smooth surface was accounted for by the change of the mean local incident ion angle (LIIA) ⟨θ′⟩. The mean surface inclination angle distribution (SIAD) ⟨δ⟩ was found to be a useful parameter to estimate the LIIA from the calculated IADs. We report global empirical formulas for the mean LIIA and fraction of the area shadowed from the main ions for D plasmas for rough surfaces with B-field incident angles α = 85°–89° as a function of the mean SIAD ⟨δ⟩. We propose the use of the mean LIIA ⟨θ′⟩ to estimate the sputtering yield for rough surfaces from the angular dependence of the sputtering yield.</description><subject>Divertors (fusion reactors)</subject><subject>Flat surfaces</subject><subject>Graphite</subject><subject>Inclination angle</subject><subject>Ion trajectories</subject><subject>Parameter estimation</subject><subject>Patterning</subject><subject>Plasma physics</subject><subject>Plasmas (physics)</subject><subject>Roughness</subject><subject>Sheaths</subject><subject>Silicon carbide</subject><subject>Sputtering</subject><subject>Topology</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LxDAQhosouK4e_AdFTwpdJ23z0aMsfoHgRcFbSNOkm2W3qUm64Mm_bra76EHwNJnMkzcz7yTJOYIZAlLc4BlAhRHGB8kEAasySmh5uD1TyAgp34-TE--XAFASzCbJ19yu-yGIYGwnVqnpNsoH0455anW8kKZRXUi3uejalfIxNOlaBOVMfKGc9WMtpM4O7SJtnegXJqgR82ZlZKxK4eqokzZmo1ywLvWD00Iqf5ocabHy6mwfp8nb_d3r_DF7fnl4mt8-Z7JgVcjqChGBkCyQZE3JCtlgXYIqMCW6ERUrEIWSMSo0rWuQdSk0MFlhInKsGaHFNLnY6do4HvcyNigXsbNOycARq4CSPEKXO6h39mOIRvClHVz0xfOc5kBynBcQqasdJePo3inNe2fWwn1yBHy7BI75fgmRvd6x2x9HU3_gjXW_IO8b_R_8V_kbRWCXKA</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Abe, S.</creator><creator>Skinner, C. H.</creator><creator>Liu, A.</creator><creator>Garcia, J.</creator><creator>Lin, Z.</creator><creator>Bringuier, S.</creator><creator>Abrams, T.</creator><creator>Koel, B. E.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0032-4991</orcidid><orcidid>https://orcid.org/0000-0002-1477-423X</orcidid><orcidid>https://orcid.org/0000-0002-0365-8137</orcidid><orcidid>https://orcid.org/0000-0002-5936-9924</orcidid><orcidid>https://orcid.org/0000-0002-1674-2418</orcidid><orcidid>https://orcid.org/0000-0002-9605-6871</orcidid><orcidid>https://orcid.org/0000-0001-6753-1437</orcidid><orcidid>https://orcid.org/0000000296056871</orcidid><orcidid>https://orcid.org/0000000259369924</orcidid><orcidid>https://orcid.org/0000000167531437</orcidid><orcidid>https://orcid.org/0000000200324991</orcidid><orcidid>https://orcid.org/0000000216742418</orcidid><orcidid>https://orcid.org/0000000203658137</orcidid><orcidid>https://orcid.org/000000021477423X</orcidid></search><sort><creationdate>202210</creationdate><title>Computational investigation of incident ion angles and material erosion at rough graphite and silicon carbide divertor surfaces</title><author>Abe, S. ; Skinner, C. H. ; Liu, A. ; Garcia, J. ; Lin, Z. ; Bringuier, S. ; Abrams, T. ; Koel, B. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-b916a11c31c8d483cd5f40e3576fda9831704887af7bb0cb4af08c956a25f8673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Divertors (fusion reactors)</topic><topic>Flat surfaces</topic><topic>Graphite</topic><topic>Inclination angle</topic><topic>Ion trajectories</topic><topic>Parameter estimation</topic><topic>Patterning</topic><topic>Plasma physics</topic><topic>Plasmas (physics)</topic><topic>Roughness</topic><topic>Sheaths</topic><topic>Silicon carbide</topic><topic>Sputtering</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abe, S.</creatorcontrib><creatorcontrib>Skinner, C. H.</creatorcontrib><creatorcontrib>Liu, A.</creatorcontrib><creatorcontrib>Garcia, J.</creatorcontrib><creatorcontrib>Lin, Z.</creatorcontrib><creatorcontrib>Bringuier, S.</creatorcontrib><creatorcontrib>Abrams, T.</creatorcontrib><creatorcontrib>Koel, B. E.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abe, S.</au><au>Skinner, C. H.</au><au>Liu, A.</au><au>Garcia, J.</au><au>Lin, Z.</au><au>Bringuier, S.</au><au>Abrams, T.</au><au>Koel, B. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational investigation of incident ion angles and material erosion at rough graphite and silicon carbide divertor surfaces</atitle><jtitle>Physics of plasmas</jtitle><date>2022-10</date><risdate>2022</risdate><volume>29</volume><issue>10</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>We present a computational investigation of the dependence of material erosion on the incident ion angle at rough graphite and silicon carbide divertor surfaces. Ion angle distributions (IADs) for D plasmas at NSTX-U and DIII-D divertors were calculated by an equation-of-motion model that traces the ion trajectories in the sheath. Then, the effective sputtering yields and ion shadowed area fractions were calculated by a Monte Carlo micro-patterning and roughness code that applied the calculated IADs to surface topographic data that were obtained from optical confocal microscopy of rough graphite and SiC divertor surfaces from NSTX-U and DIII-D experiments. The calculations found that the effective sputtering yields, the sputtering pattern, and the shadowed area are determined by the detailed surface topology rather than the root mean square roughness RRMS, which represents deviations from a flat surface. The suppression of the effective sputtering yields for rough surfaces compared to the yield for a smooth surface was accounted for by the change of the mean local incident ion angle (LIIA) ⟨θ′⟩. The mean surface inclination angle distribution (SIAD) ⟨δ⟩ was found to be a useful parameter to estimate the LIIA from the calculated IADs. We report global empirical formulas for the mean LIIA and fraction of the area shadowed from the main ions for D plasmas for rough surfaces with B-field incident angles α = 85°–89° as a function of the mean SIAD ⟨δ⟩. We propose the use of the mean LIIA ⟨θ′⟩ to estimate the sputtering yield for rough surfaces from the angular dependence of the sputtering yield.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0095155</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0032-4991</orcidid><orcidid>https://orcid.org/0000-0002-1477-423X</orcidid><orcidid>https://orcid.org/0000-0002-0365-8137</orcidid><orcidid>https://orcid.org/0000-0002-5936-9924</orcidid><orcidid>https://orcid.org/0000-0002-1674-2418</orcidid><orcidid>https://orcid.org/0000-0002-9605-6871</orcidid><orcidid>https://orcid.org/0000-0001-6753-1437</orcidid><orcidid>https://orcid.org/0000000296056871</orcidid><orcidid>https://orcid.org/0000000259369924</orcidid><orcidid>https://orcid.org/0000000167531437</orcidid><orcidid>https://orcid.org/0000000200324991</orcidid><orcidid>https://orcid.org/0000000216742418</orcidid><orcidid>https://orcid.org/0000000203658137</orcidid><orcidid>https://orcid.org/000000021477423X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2022-10, Vol.29 (10) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0095155 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Divertors (fusion reactors) Flat surfaces Graphite Inclination angle Ion trajectories Parameter estimation Patterning Plasma physics Plasmas (physics) Roughness Sheaths Silicon carbide Sputtering Topology |
title | Computational investigation of incident ion angles and material erosion at rough graphite and silicon carbide divertor surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A30%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20investigation%20of%20incident%20ion%20angles%20and%20material%20erosion%20at%20rough%20graphite%20and%20silicon%20carbide%20divertor%20surfaces&rft.jtitle=Physics%20of%20plasmas&rft.au=Abe,%20S.&rft.date=2022-10&rft.volume=29&rft.issue=10&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0095155&rft_dat=%3Cproquest_scita%3E2720625230%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2720625230&rft_id=info:pmid/&rfr_iscdi=true |