Efficient approach for solving high order (2+1)D-differential equation

This article presents an exact analysis solution for high order (2+1) dimensional differential equations by using an efficient approach based on coupled method via LA-transform with decomposition method to overcome the computational difficulties. Convergence of series solution has been discussed wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hussein, Noor A., Tawfiq, Luma N. M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2398
creator Hussein, Noor A.
Tawfiq, Luma N. M.
description This article presents an exact analysis solution for high order (2+1) dimensional differential equations by using an efficient approach based on coupled method via LA-transform with decomposition method to overcome the computational difficulties. Convergence of series solution has been discussed with two illustrated examples, and the method has shown a high-precision, fast approach to solve non-linear (2+1) dimensional PDEs with initial condition. There is no need of any discretization of domain or assumption for a small parameter to be present in the problem. The steps of the suggested method are easily implemented. High accuracy and a rapid convergence to the exact solution compared with other methods can be used to solve types of PDEs.
doi_str_mv 10.1063/5.0093671
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0093671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2728288058</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-7aa3140f032d7d9d671d23258333a8f06bb491fd90fd431b1d7e22eb2a35b08b3</originalsourceid><addsrcrecordid>eNotkF9LwzAUxYMoOKcPfoOAL_6h897ctkkfZW4qDHxR8C2kS7JlzLZL24Hf3ur2dOFwzzk_DmPXCBOEnB6zCUBBucQTNsIsw0TmmJ-y0aCmiUjp65xdtO0GQBRSqhGbz7wPy-CqjpumibVZrrmvI2_r7T5UK74OqzWvo3WR34oHvHtObPDexcEQzJa7XW-6UFeX7MybbeuujnfMPuezj-lrsnh_eZs-LZIGibpEGkOYggcSVtrCDpxWkMgUERnlIS_LtEBvC_A2JSzRSieEK4WhrARV0pjdHHIH1F3v2k5v6j5WQ6UWUiihFAxhY3Z_-GqXofvn000M3yb-aAT9t5PO9HEn-gU6NlhW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2728288058</pqid></control><display><type>conference_proceeding</type><title>Efficient approach for solving high order (2+1)D-differential equation</title><source>AIP Journals Complete</source><creator>Hussein, Noor A. ; Tawfiq, Luma N. M.</creator><contributor>Ali, Tammar Hussein ; Kadhem, Safaa Kareem ; Al-Mussawi, Hana Kadum ; Almurshedi, Ahmed Fadhil ; Majeed, Sadiq ; Hussain, Firas Faeq K. ; Jawad, Laith Abdul Hassan M.</contributor><creatorcontrib>Hussein, Noor A. ; Tawfiq, Luma N. M. ; Ali, Tammar Hussein ; Kadhem, Safaa Kareem ; Al-Mussawi, Hana Kadum ; Almurshedi, Ahmed Fadhil ; Majeed, Sadiq ; Hussain, Firas Faeq K. ; Jawad, Laith Abdul Hassan M.</creatorcontrib><description>This article presents an exact analysis solution for high order (2+1) dimensional differential equations by using an efficient approach based on coupled method via LA-transform with decomposition method to overcome the computational difficulties. Convergence of series solution has been discussed with two illustrated examples, and the method has shown a high-precision, fast approach to solve non-linear (2+1) dimensional PDEs with initial condition. There is no need of any discretization of domain or assumption for a small parameter to be present in the problem. The steps of the suggested method are easily implemented. High accuracy and a rapid convergence to the exact solution compared with other methods can be used to solve types of PDEs.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0093671</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Convergence ; Exact solutions ; Partial differential equations</subject><ispartof>AIP conference proceedings, 2022, Vol.2398 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0093671$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Ali, Tammar Hussein</contributor><contributor>Kadhem, Safaa Kareem</contributor><contributor>Al-Mussawi, Hana Kadum</contributor><contributor>Almurshedi, Ahmed Fadhil</contributor><contributor>Majeed, Sadiq</contributor><contributor>Hussain, Firas Faeq K.</contributor><contributor>Jawad, Laith Abdul Hassan M.</contributor><creatorcontrib>Hussein, Noor A.</creatorcontrib><creatorcontrib>Tawfiq, Luma N. M.</creatorcontrib><title>Efficient approach for solving high order (2+1)D-differential equation</title><title>AIP conference proceedings</title><description>This article presents an exact analysis solution for high order (2+1) dimensional differential equations by using an efficient approach based on coupled method via LA-transform with decomposition method to overcome the computational difficulties. Convergence of series solution has been discussed with two illustrated examples, and the method has shown a high-precision, fast approach to solve non-linear (2+1) dimensional PDEs with initial condition. There is no need of any discretization of domain or assumption for a small parameter to be present in the problem. The steps of the suggested method are easily implemented. High accuracy and a rapid convergence to the exact solution compared with other methods can be used to solve types of PDEs.</description><subject>Convergence</subject><subject>Exact solutions</subject><subject>Partial differential equations</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkF9LwzAUxYMoOKcPfoOAL_6h897ctkkfZW4qDHxR8C2kS7JlzLZL24Hf3ur2dOFwzzk_DmPXCBOEnB6zCUBBucQTNsIsw0TmmJ-y0aCmiUjp65xdtO0GQBRSqhGbz7wPy-CqjpumibVZrrmvI2_r7T5UK74OqzWvo3WR34oHvHtObPDexcEQzJa7XW-6UFeX7MybbeuujnfMPuezj-lrsnh_eZs-LZIGibpEGkOYggcSVtrCDpxWkMgUERnlIS_LtEBvC_A2JSzRSieEK4WhrARV0pjdHHIH1F3v2k5v6j5WQ6UWUiihFAxhY3Z_-GqXofvn000M3yb-aAT9t5PO9HEn-gU6NlhW</recordid><startdate>20221025</startdate><enddate>20221025</enddate><creator>Hussein, Noor A.</creator><creator>Tawfiq, Luma N. M.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20221025</creationdate><title>Efficient approach for solving high order (2+1)D-differential equation</title><author>Hussein, Noor A. ; Tawfiq, Luma N. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-7aa3140f032d7d9d671d23258333a8f06bb491fd90fd431b1d7e22eb2a35b08b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convergence</topic><topic>Exact solutions</topic><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hussein, Noor A.</creatorcontrib><creatorcontrib>Tawfiq, Luma N. M.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussein, Noor A.</au><au>Tawfiq, Luma N. M.</au><au>Ali, Tammar Hussein</au><au>Kadhem, Safaa Kareem</au><au>Al-Mussawi, Hana Kadum</au><au>Almurshedi, Ahmed Fadhil</au><au>Majeed, Sadiq</au><au>Hussain, Firas Faeq K.</au><au>Jawad, Laith Abdul Hassan M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Efficient approach for solving high order (2+1)D-differential equation</atitle><btitle>AIP conference proceedings</btitle><date>2022-10-25</date><risdate>2022</risdate><volume>2398</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>This article presents an exact analysis solution for high order (2+1) dimensional differential equations by using an efficient approach based on coupled method via LA-transform with decomposition method to overcome the computational difficulties. Convergence of series solution has been discussed with two illustrated examples, and the method has shown a high-precision, fast approach to solve non-linear (2+1) dimensional PDEs with initial condition. There is no need of any discretization of domain or assumption for a small parameter to be present in the problem. The steps of the suggested method are easily implemented. High accuracy and a rapid convergence to the exact solution compared with other methods can be used to solve types of PDEs.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0093671</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2022, Vol.2398 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0093671
source AIP Journals Complete
subjects Convergence
Exact solutions
Partial differential equations
title Efficient approach for solving high order (2+1)D-differential equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A45%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Efficient%20approach%20for%20solving%20high%20order%20(2+1)D-differential%20equation&rft.btitle=AIP%20conference%20proceedings&rft.au=Hussein,%20Noor%20A.&rft.date=2022-10-25&rft.volume=2398&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0093671&rft_dat=%3Cproquest_scita%3E2728288058%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728288058&rft_id=info:pmid/&rfr_iscdi=true