Geometric flow control in lateral flow assays: Macroscopic single-phase modeling

To describe the dynamics of fluid flow in Lateral Flow Assays (LFAs) and to understand the effect of geometry on the propagation speed of the fluid front, a single-phase model is developed. The model can predict wicking time for different geometries. Axisymmetric geometries with changes in their cro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2022-06, Vol.34 (6)
Hauptverfasser: Jamshidi, Farshid, Kunz, Willfried, Altschuh, Patrick, Bremerich, Marcel, Przybylla, Robert, Selzer, Michael, Nestler, Britta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Physics of fluids (1994)
container_volume 34
creator Jamshidi, Farshid
Kunz, Willfried
Altschuh, Patrick
Bremerich, Marcel
Przybylla, Robert
Selzer, Michael
Nestler, Britta
description To describe the dynamics of fluid flow in Lateral Flow Assays (LFAs) and to understand the effect of geometry on the propagation speed of the fluid front, a single-phase model is developed. The model can predict wicking time for different geometries. Axisymmetric geometries with changes in their cross sections are studied to understand the wicking behavior. To validate the modeling results, imaging experiments that capture the fluid front are conducted on all geometries. In all cases, convincing agreement between modeling results and experimental data has been observed. Using data-driven information and knowledge about structure–property correlations, it is possible to control wicking processes to establish a desired velocity at a specific position in LFAs. The proposed approach serves as a basis for the creation of a design tool for application-oriented membranes.
doi_str_mv 10.1063/5.0093316
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0093316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2676667990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-ba62604ba9aa417ca578ce1fe133044a6840e2b197629449dfb4542e3843bd603</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK4e_AYFTwrVyZ-mjTdZdBVW9KDnMM2m2iXb1CSL7Le3pXv2NMPjNzNvHiGXFG4pSH5X3AIozqk8IjMKlcpLKeXx2JeQS8npKTmLcQMAXDE5I-9L67c2hdZkjfO_mfFdCt5lbZc5TDagm3SMEffxPntFE3w0vh8GYtt9OZv33xhttvVr6wbhnJw06KK9ONQ5-Xx6_Fg856u35cviYZUbpljKa5RMgqhRIQpaGizKyljaWMo5CIGyEmBZTVUpmRJCrZtaFIJZXgleryXwObma9vbB_-xsTHrjd6EbTmomx6dLpUbqeqJG1zHYRveh3WLYawp6DEwX-hDYwN5MbDRtwtT67h_4D1COacM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676667990</pqid></control><display><type>article</type><title>Geometric flow control in lateral flow assays: Macroscopic single-phase modeling</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Jamshidi, Farshid ; Kunz, Willfried ; Altschuh, Patrick ; Bremerich, Marcel ; Przybylla, Robert ; Selzer, Michael ; Nestler, Britta</creator><creatorcontrib>Jamshidi, Farshid ; Kunz, Willfried ; Altschuh, Patrick ; Bremerich, Marcel ; Przybylla, Robert ; Selzer, Michael ; Nestler, Britta</creatorcontrib><description>To describe the dynamics of fluid flow in Lateral Flow Assays (LFAs) and to understand the effect of geometry on the propagation speed of the fluid front, a single-phase model is developed. The model can predict wicking time for different geometries. Axisymmetric geometries with changes in their cross sections are studied to understand the wicking behavior. To validate the modeling results, imaging experiments that capture the fluid front are conducted on all geometries. In all cases, convincing agreement between modeling results and experimental data has been observed. Using data-driven information and knowledge about structure–property correlations, it is possible to control wicking processes to establish a desired velocity at a specific position in LFAs. The proposed approach serves as a basis for the creation of a design tool for application-oriented membranes.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0093316</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Flow control ; Fluid dynamics ; Fluid flow ; Modelling</subject><ispartof>Physics of fluids (1994), 2022-06, Vol.34 (6)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-ba62604ba9aa417ca578ce1fe133044a6840e2b197629449dfb4542e3843bd603</citedby><cites>FETCH-LOGICAL-c292t-ba62604ba9aa417ca578ce1fe133044a6840e2b197629449dfb4542e3843bd603</cites><orcidid>0000-0003-1373-492X ; 0000-0002-3768-3277 ; 0000-0002-9131-9310 ; 0000-0001-7599-4992 ; 0000-0002-9756-646X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4510,27922,27923</link.rule.ids></links><search><creatorcontrib>Jamshidi, Farshid</creatorcontrib><creatorcontrib>Kunz, Willfried</creatorcontrib><creatorcontrib>Altschuh, Patrick</creatorcontrib><creatorcontrib>Bremerich, Marcel</creatorcontrib><creatorcontrib>Przybylla, Robert</creatorcontrib><creatorcontrib>Selzer, Michael</creatorcontrib><creatorcontrib>Nestler, Britta</creatorcontrib><title>Geometric flow control in lateral flow assays: Macroscopic single-phase modeling</title><title>Physics of fluids (1994)</title><description>To describe the dynamics of fluid flow in Lateral Flow Assays (LFAs) and to understand the effect of geometry on the propagation speed of the fluid front, a single-phase model is developed. The model can predict wicking time for different geometries. Axisymmetric geometries with changes in their cross sections are studied to understand the wicking behavior. To validate the modeling results, imaging experiments that capture the fluid front are conducted on all geometries. In all cases, convincing agreement between modeling results and experimental data has been observed. Using data-driven information and knowledge about structure–property correlations, it is possible to control wicking processes to establish a desired velocity at a specific position in LFAs. The proposed approach serves as a basis for the creation of a design tool for application-oriented membranes.</description><subject>Flow control</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Modelling</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK4e_AYFTwrVyZ-mjTdZdBVW9KDnMM2m2iXb1CSL7Le3pXv2NMPjNzNvHiGXFG4pSH5X3AIozqk8IjMKlcpLKeXx2JeQS8npKTmLcQMAXDE5I-9L67c2hdZkjfO_mfFdCt5lbZc5TDagm3SMEffxPntFE3w0vh8GYtt9OZv33xhttvVr6wbhnJw06KK9ONQ5-Xx6_Fg856u35cviYZUbpljKa5RMgqhRIQpaGizKyljaWMo5CIGyEmBZTVUpmRJCrZtaFIJZXgleryXwObma9vbB_-xsTHrjd6EbTmomx6dLpUbqeqJG1zHYRveh3WLYawp6DEwX-hDYwN5MbDRtwtT67h_4D1COacM</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Jamshidi, Farshid</creator><creator>Kunz, Willfried</creator><creator>Altschuh, Patrick</creator><creator>Bremerich, Marcel</creator><creator>Przybylla, Robert</creator><creator>Selzer, Michael</creator><creator>Nestler, Britta</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1373-492X</orcidid><orcidid>https://orcid.org/0000-0002-3768-3277</orcidid><orcidid>https://orcid.org/0000-0002-9131-9310</orcidid><orcidid>https://orcid.org/0000-0001-7599-4992</orcidid><orcidid>https://orcid.org/0000-0002-9756-646X</orcidid></search><sort><creationdate>202206</creationdate><title>Geometric flow control in lateral flow assays: Macroscopic single-phase modeling</title><author>Jamshidi, Farshid ; Kunz, Willfried ; Altschuh, Patrick ; Bremerich, Marcel ; Przybylla, Robert ; Selzer, Michael ; Nestler, Britta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-ba62604ba9aa417ca578ce1fe133044a6840e2b197629449dfb4542e3843bd603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Flow control</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Modelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jamshidi, Farshid</creatorcontrib><creatorcontrib>Kunz, Willfried</creatorcontrib><creatorcontrib>Altschuh, Patrick</creatorcontrib><creatorcontrib>Bremerich, Marcel</creatorcontrib><creatorcontrib>Przybylla, Robert</creatorcontrib><creatorcontrib>Selzer, Michael</creatorcontrib><creatorcontrib>Nestler, Britta</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jamshidi, Farshid</au><au>Kunz, Willfried</au><au>Altschuh, Patrick</au><au>Bremerich, Marcel</au><au>Przybylla, Robert</au><au>Selzer, Michael</au><au>Nestler, Britta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric flow control in lateral flow assays: Macroscopic single-phase modeling</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2022-06</date><risdate>2022</risdate><volume>34</volume><issue>6</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>To describe the dynamics of fluid flow in Lateral Flow Assays (LFAs) and to understand the effect of geometry on the propagation speed of the fluid front, a single-phase model is developed. The model can predict wicking time for different geometries. Axisymmetric geometries with changes in their cross sections are studied to understand the wicking behavior. To validate the modeling results, imaging experiments that capture the fluid front are conducted on all geometries. In all cases, convincing agreement between modeling results and experimental data has been observed. Using data-driven information and knowledge about structure–property correlations, it is possible to control wicking processes to establish a desired velocity at a specific position in LFAs. The proposed approach serves as a basis for the creation of a design tool for application-oriented membranes.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0093316</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1373-492X</orcidid><orcidid>https://orcid.org/0000-0002-3768-3277</orcidid><orcidid>https://orcid.org/0000-0002-9131-9310</orcidid><orcidid>https://orcid.org/0000-0001-7599-4992</orcidid><orcidid>https://orcid.org/0000-0002-9756-646X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2022-06, Vol.34 (6)
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_5_0093316
source AIP Journals Complete; Alma/SFX Local Collection
subjects Flow control
Fluid dynamics
Fluid flow
Modelling
title Geometric flow control in lateral flow assays: Macroscopic single-phase modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A47%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20flow%20control%20in%20lateral%20flow%20assays:%20Macroscopic%20single-phase%20modeling&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Jamshidi,%20Farshid&rft.date=2022-06&rft.volume=34&rft.issue=6&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0093316&rft_dat=%3Cproquest_scita%3E2676667990%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2676667990&rft_id=info:pmid/&rfr_iscdi=true