Conceptual exploration and comparative study on the use of deep learning approach in HAR models

Human Activity Recognition (HAR) has taken great attention from researchers last few years, because of the promising results shown by deep learning, and the necessity to make a recognizer system, in this paper a comparison between two types of Convolutional Neural Network (CNN) architectures will be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mohialdeen, Abdulrahman S., Albaker, Baraa M., Alsaedi, Malik A
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2415
creator Mohialdeen, Abdulrahman S.
Albaker, Baraa M.
Alsaedi, Malik A
description Human Activity Recognition (HAR) has taken great attention from researchers last few years, because of the promising results shown by deep learning, and the necessity to make a recognizer system, in this paper a comparison between two types of Convolutional Neural Network (CNN) architectures will be presented. Two Dimensional (2D) CNN followed by a Recurrent Neural Network (RNN) referring to it as 2D-CNN-RNN, and 3D-CNN. Filter with 3D-CNN will be used, after training and testing the models with two different datasets, KTH which has six human activities (Boxing, Handclapping, Handwaving, Walking, Jogging, and Running), and UT-Interaction dataset that has six interaction activities (Handshake, Hug, Kick, Point, Punch, and Push). 3D-CNN shown remarkable results with the aid of filter, but without filter, the dominant was 2D-CNN-RNN models.
doi_str_mv 10.1063/5.0093068
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0093068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2754618489</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2038-84d75dbdeba396d37f82a3b635ec72d6a7b1cd8fe14a20f8e2724176ae1dc0043</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_0HAm7A1X5tkj6WoFQRBFLyF7GbWbtkmcbNb7L93awvePA0z88y8My9C15TMKJH8Lp8RUnAi9Qma0DynmZJUnqLJWBUZE_zjHF2ktCaEFUrpCTKL4CuI_WBbDN-xDZ3tm-Cx9Q5XYRPtPt8CTv3gdnhs9CvAQwIcauwAIm7Bdr7xn9jG2AVbrXDj8XL-ijfBQZsu0Vlt2wRXxzhF7w_3b4tl9vzy-LSYP2eREa4zLZzKXemgtLyQjqtaM8tLyXOoFHPSqpJWTtdAhWWk1sAUE1RJC9RVhAg-RTeHveMRXwOk3qzD0PlR0jCVC0m10MVI3R6oVDX976Mmds3GdjuzDZ3JzdE8E139H0yJ2bv9N8B_AAulcb4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2754618489</pqid></control><display><type>conference_proceeding</type><title>Conceptual exploration and comparative study on the use of deep learning approach in HAR models</title><source>AIP Journals Complete</source><creator>Mohialdeen, Abdulrahman S. ; Albaker, Baraa M. ; Alsaedi, Malik A</creator><contributor>Ibrahim, Raheek I. ; Mahel, Farag ; Anead, Hosham Salim ; Hussein, Hashim Abed ; Jalil, Jalal M. ; Mohammed, Jamal A.</contributor><creatorcontrib>Mohialdeen, Abdulrahman S. ; Albaker, Baraa M. ; Alsaedi, Malik A ; Ibrahim, Raheek I. ; Mahel, Farag ; Anead, Hosham Salim ; Hussein, Hashim Abed ; Jalil, Jalal M. ; Mohammed, Jamal A.</creatorcontrib><description>Human Activity Recognition (HAR) has taken great attention from researchers last few years, because of the promising results shown by deep learning, and the necessity to make a recognizer system, in this paper a comparison between two types of Convolutional Neural Network (CNN) architectures will be presented. Two Dimensional (2D) CNN followed by a Recurrent Neural Network (RNN) referring to it as 2D-CNN-RNN, and 3D-CNN. Filter with 3D-CNN will be used, after training and testing the models with two different datasets, KTH which has six human activities (Boxing, Handclapping, Handwaving, Walking, Jogging, and Running), and UT-Interaction dataset that has six interaction activities (Handshake, Hug, Kick, Point, Punch, and Push). 3D-CNN shown remarkable results with the aid of filter, but without filter, the dominant was 2D-CNN-RNN models.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0093068</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial neural networks ; Comparative studies ; Datasets ; Deep learning ; Human activity recognition ; Machine learning ; Recurrent neural networks ; Two dimensional models</subject><ispartof>AIP conference proceedings, 2022, Vol.2415 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0093068$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Ibrahim, Raheek I.</contributor><contributor>Mahel, Farag</contributor><contributor>Anead, Hosham Salim</contributor><contributor>Hussein, Hashim Abed</contributor><contributor>Jalil, Jalal M.</contributor><contributor>Mohammed, Jamal A.</contributor><creatorcontrib>Mohialdeen, Abdulrahman S.</creatorcontrib><creatorcontrib>Albaker, Baraa M.</creatorcontrib><creatorcontrib>Alsaedi, Malik A</creatorcontrib><title>Conceptual exploration and comparative study on the use of deep learning approach in HAR models</title><title>AIP conference proceedings</title><description>Human Activity Recognition (HAR) has taken great attention from researchers last few years, because of the promising results shown by deep learning, and the necessity to make a recognizer system, in this paper a comparison between two types of Convolutional Neural Network (CNN) architectures will be presented. Two Dimensional (2D) CNN followed by a Recurrent Neural Network (RNN) referring to it as 2D-CNN-RNN, and 3D-CNN. Filter with 3D-CNN will be used, after training and testing the models with two different datasets, KTH which has six human activities (Boxing, Handclapping, Handwaving, Walking, Jogging, and Running), and UT-Interaction dataset that has six interaction activities (Handshake, Hug, Kick, Point, Punch, and Push). 3D-CNN shown remarkable results with the aid of filter, but without filter, the dominant was 2D-CNN-RNN models.</description><subject>Artificial neural networks</subject><subject>Comparative studies</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Human activity recognition</subject><subject>Machine learning</subject><subject>Recurrent neural networks</subject><subject>Two dimensional models</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_0HAm7A1X5tkj6WoFQRBFLyF7GbWbtkmcbNb7L93awvePA0z88y8My9C15TMKJH8Lp8RUnAi9Qma0DynmZJUnqLJWBUZE_zjHF2ktCaEFUrpCTKL4CuI_WBbDN-xDZ3tm-Cx9Q5XYRPtPt8CTv3gdnhs9CvAQwIcauwAIm7Bdr7xn9jG2AVbrXDj8XL-ijfBQZsu0Vlt2wRXxzhF7w_3b4tl9vzy-LSYP2eREa4zLZzKXemgtLyQjqtaM8tLyXOoFHPSqpJWTtdAhWWk1sAUE1RJC9RVhAg-RTeHveMRXwOk3qzD0PlR0jCVC0m10MVI3R6oVDX976Mmds3GdjuzDZ3JzdE8E139H0yJ2bv9N8B_AAulcb4</recordid><startdate>20221215</startdate><enddate>20221215</enddate><creator>Mohialdeen, Abdulrahman S.</creator><creator>Albaker, Baraa M.</creator><creator>Alsaedi, Malik A</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20221215</creationdate><title>Conceptual exploration and comparative study on the use of deep learning approach in HAR models</title><author>Mohialdeen, Abdulrahman S. ; Albaker, Baraa M. ; Alsaedi, Malik A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2038-84d75dbdeba396d37f82a3b635ec72d6a7b1cd8fe14a20f8e2724176ae1dc0043</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Comparative studies</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Human activity recognition</topic><topic>Machine learning</topic><topic>Recurrent neural networks</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohialdeen, Abdulrahman S.</creatorcontrib><creatorcontrib>Albaker, Baraa M.</creatorcontrib><creatorcontrib>Alsaedi, Malik A</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohialdeen, Abdulrahman S.</au><au>Albaker, Baraa M.</au><au>Alsaedi, Malik A</au><au>Ibrahim, Raheek I.</au><au>Mahel, Farag</au><au>Anead, Hosham Salim</au><au>Hussein, Hashim Abed</au><au>Jalil, Jalal M.</au><au>Mohammed, Jamal A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Conceptual exploration and comparative study on the use of deep learning approach in HAR models</atitle><btitle>AIP conference proceedings</btitle><date>2022-12-15</date><risdate>2022</risdate><volume>2415</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Human Activity Recognition (HAR) has taken great attention from researchers last few years, because of the promising results shown by deep learning, and the necessity to make a recognizer system, in this paper a comparison between two types of Convolutional Neural Network (CNN) architectures will be presented. Two Dimensional (2D) CNN followed by a Recurrent Neural Network (RNN) referring to it as 2D-CNN-RNN, and 3D-CNN. Filter with 3D-CNN will be used, after training and testing the models with two different datasets, KTH which has six human activities (Boxing, Handclapping, Handwaving, Walking, Jogging, and Running), and UT-Interaction dataset that has six interaction activities (Handshake, Hug, Kick, Point, Punch, and Push). 3D-CNN shown remarkable results with the aid of filter, but without filter, the dominant was 2D-CNN-RNN models.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0093068</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2022, Vol.2415 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0093068
source AIP Journals Complete
subjects Artificial neural networks
Comparative studies
Datasets
Deep learning
Human activity recognition
Machine learning
Recurrent neural networks
Two dimensional models
title Conceptual exploration and comparative study on the use of deep learning approach in HAR models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A00%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Conceptual%20exploration%20and%20comparative%20study%20on%20the%20use%20of%20deep%20learning%20approach%20in%20HAR%20models&rft.btitle=AIP%20conference%20proceedings&rft.au=Mohialdeen,%20Abdulrahman%20S.&rft.date=2022-12-15&rft.volume=2415&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0093068&rft_dat=%3Cproquest_scita%3E2754618489%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754618489&rft_id=info:pmid/&rfr_iscdi=true