Conceptual exploration and comparative study on the use of deep learning approach in HAR models
Human Activity Recognition (HAR) has taken great attention from researchers last few years, because of the promising results shown by deep learning, and the necessity to make a recognizer system, in this paper a comparison between two types of Convolutional Neural Network (CNN) architectures will be...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2415 |
creator | Mohialdeen, Abdulrahman S. Albaker, Baraa M. Alsaedi, Malik A |
description | Human Activity Recognition (HAR) has taken great attention from researchers last few years, because of the promising results shown by deep learning, and the necessity to make a recognizer system, in this paper a comparison between two types of Convolutional Neural Network (CNN) architectures will be presented. Two Dimensional (2D) CNN followed by a Recurrent Neural Network (RNN) referring to it as 2D-CNN-RNN, and 3D-CNN. Filter with 3D-CNN will be used, after training and testing the models with two different datasets, KTH which has six human activities (Boxing, Handclapping, Handwaving, Walking, Jogging, and Running), and UT-Interaction dataset that has six interaction activities (Handshake, Hug, Kick, Point, Punch, and Push). 3D-CNN shown remarkable results with the aid of filter, but without filter, the dominant was 2D-CNN-RNN models. |
doi_str_mv | 10.1063/5.0093068 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0093068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2754618489</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2038-84d75dbdeba396d37f82a3b635ec72d6a7b1cd8fe14a20f8e2724176ae1dc0043</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_0HAm7A1X5tkj6WoFQRBFLyF7GbWbtkmcbNb7L93awvePA0z88y8My9C15TMKJH8Lp8RUnAi9Qma0DynmZJUnqLJWBUZE_zjHF2ktCaEFUrpCTKL4CuI_WBbDN-xDZ3tm-Cx9Q5XYRPtPt8CTv3gdnhs9CvAQwIcauwAIm7Bdr7xn9jG2AVbrXDj8XL-ijfBQZsu0Vlt2wRXxzhF7w_3b4tl9vzy-LSYP2eREa4zLZzKXemgtLyQjqtaM8tLyXOoFHPSqpJWTtdAhWWk1sAUE1RJC9RVhAg-RTeHveMRXwOk3qzD0PlR0jCVC0m10MVI3R6oVDX976Mmds3GdjuzDZ3JzdE8E139H0yJ2bv9N8B_AAulcb4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2754618489</pqid></control><display><type>conference_proceeding</type><title>Conceptual exploration and comparative study on the use of deep learning approach in HAR models</title><source>AIP Journals Complete</source><creator>Mohialdeen, Abdulrahman S. ; Albaker, Baraa M. ; Alsaedi, Malik A</creator><contributor>Ibrahim, Raheek I. ; Mahel, Farag ; Anead, Hosham Salim ; Hussein, Hashim Abed ; Jalil, Jalal M. ; Mohammed, Jamal A.</contributor><creatorcontrib>Mohialdeen, Abdulrahman S. ; Albaker, Baraa M. ; Alsaedi, Malik A ; Ibrahim, Raheek I. ; Mahel, Farag ; Anead, Hosham Salim ; Hussein, Hashim Abed ; Jalil, Jalal M. ; Mohammed, Jamal A.</creatorcontrib><description>Human Activity Recognition (HAR) has taken great attention from researchers last few years, because of the promising results shown by deep learning, and the necessity to make a recognizer system, in this paper a comparison between two types of Convolutional Neural Network (CNN) architectures will be presented. Two Dimensional (2D) CNN followed by a Recurrent Neural Network (RNN) referring to it as 2D-CNN-RNN, and 3D-CNN. Filter with 3D-CNN will be used, after training and testing the models with two different datasets, KTH which has six human activities (Boxing, Handclapping, Handwaving, Walking, Jogging, and Running), and UT-Interaction dataset that has six interaction activities (Handshake, Hug, Kick, Point, Punch, and Push). 3D-CNN shown remarkable results with the aid of filter, but without filter, the dominant was 2D-CNN-RNN models.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0093068</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial neural networks ; Comparative studies ; Datasets ; Deep learning ; Human activity recognition ; Machine learning ; Recurrent neural networks ; Two dimensional models</subject><ispartof>AIP conference proceedings, 2022, Vol.2415 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0093068$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Ibrahim, Raheek I.</contributor><contributor>Mahel, Farag</contributor><contributor>Anead, Hosham Salim</contributor><contributor>Hussein, Hashim Abed</contributor><contributor>Jalil, Jalal M.</contributor><contributor>Mohammed, Jamal A.</contributor><creatorcontrib>Mohialdeen, Abdulrahman S.</creatorcontrib><creatorcontrib>Albaker, Baraa M.</creatorcontrib><creatorcontrib>Alsaedi, Malik A</creatorcontrib><title>Conceptual exploration and comparative study on the use of deep learning approach in HAR models</title><title>AIP conference proceedings</title><description>Human Activity Recognition (HAR) has taken great attention from researchers last few years, because of the promising results shown by deep learning, and the necessity to make a recognizer system, in this paper a comparison between two types of Convolutional Neural Network (CNN) architectures will be presented. Two Dimensional (2D) CNN followed by a Recurrent Neural Network (RNN) referring to it as 2D-CNN-RNN, and 3D-CNN. Filter with 3D-CNN will be used, after training and testing the models with two different datasets, KTH which has six human activities (Boxing, Handclapping, Handwaving, Walking, Jogging, and Running), and UT-Interaction dataset that has six interaction activities (Handshake, Hug, Kick, Point, Punch, and Push). 3D-CNN shown remarkable results with the aid of filter, but without filter, the dominant was 2D-CNN-RNN models.</description><subject>Artificial neural networks</subject><subject>Comparative studies</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Human activity recognition</subject><subject>Machine learning</subject><subject>Recurrent neural networks</subject><subject>Two dimensional models</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_0HAm7A1X5tkj6WoFQRBFLyF7GbWbtkmcbNb7L93awvePA0z88y8My9C15TMKJH8Lp8RUnAi9Qma0DynmZJUnqLJWBUZE_zjHF2ktCaEFUrpCTKL4CuI_WBbDN-xDZ3tm-Cx9Q5XYRPtPt8CTv3gdnhs9CvAQwIcauwAIm7Bdr7xn9jG2AVbrXDj8XL-ijfBQZsu0Vlt2wRXxzhF7w_3b4tl9vzy-LSYP2eREa4zLZzKXemgtLyQjqtaM8tLyXOoFHPSqpJWTtdAhWWk1sAUE1RJC9RVhAg-RTeHveMRXwOk3qzD0PlR0jCVC0m10MVI3R6oVDX976Mmds3GdjuzDZ3JzdE8E139H0yJ2bv9N8B_AAulcb4</recordid><startdate>20221215</startdate><enddate>20221215</enddate><creator>Mohialdeen, Abdulrahman S.</creator><creator>Albaker, Baraa M.</creator><creator>Alsaedi, Malik A</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20221215</creationdate><title>Conceptual exploration and comparative study on the use of deep learning approach in HAR models</title><author>Mohialdeen, Abdulrahman S. ; Albaker, Baraa M. ; Alsaedi, Malik A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2038-84d75dbdeba396d37f82a3b635ec72d6a7b1cd8fe14a20f8e2724176ae1dc0043</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Comparative studies</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Human activity recognition</topic><topic>Machine learning</topic><topic>Recurrent neural networks</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohialdeen, Abdulrahman S.</creatorcontrib><creatorcontrib>Albaker, Baraa M.</creatorcontrib><creatorcontrib>Alsaedi, Malik A</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohialdeen, Abdulrahman S.</au><au>Albaker, Baraa M.</au><au>Alsaedi, Malik A</au><au>Ibrahim, Raheek I.</au><au>Mahel, Farag</au><au>Anead, Hosham Salim</au><au>Hussein, Hashim Abed</au><au>Jalil, Jalal M.</au><au>Mohammed, Jamal A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Conceptual exploration and comparative study on the use of deep learning approach in HAR models</atitle><btitle>AIP conference proceedings</btitle><date>2022-12-15</date><risdate>2022</risdate><volume>2415</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Human Activity Recognition (HAR) has taken great attention from researchers last few years, because of the promising results shown by deep learning, and the necessity to make a recognizer system, in this paper a comparison between two types of Convolutional Neural Network (CNN) architectures will be presented. Two Dimensional (2D) CNN followed by a Recurrent Neural Network (RNN) referring to it as 2D-CNN-RNN, and 3D-CNN. Filter with 3D-CNN will be used, after training and testing the models with two different datasets, KTH which has six human activities (Boxing, Handclapping, Handwaving, Walking, Jogging, and Running), and UT-Interaction dataset that has six interaction activities (Handshake, Hug, Kick, Point, Punch, and Push). 3D-CNN shown remarkable results with the aid of filter, but without filter, the dominant was 2D-CNN-RNN models.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0093068</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2022, Vol.2415 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0093068 |
source | AIP Journals Complete |
subjects | Artificial neural networks Comparative studies Datasets Deep learning Human activity recognition Machine learning Recurrent neural networks Two dimensional models |
title | Conceptual exploration and comparative study on the use of deep learning approach in HAR models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A00%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Conceptual%20exploration%20and%20comparative%20study%20on%20the%20use%20of%20deep%20learning%20approach%20in%20HAR%20models&rft.btitle=AIP%20conference%20proceedings&rft.au=Mohialdeen,%20Abdulrahman%20S.&rft.date=2022-12-15&rft.volume=2415&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0093068&rft_dat=%3Cproquest_scita%3E2754618489%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754618489&rft_id=info:pmid/&rfr_iscdi=true |