Experimental investigation on the hysteresis in low-pressure inductively coupled neon discharge

A hysteresis phenomenon observed in neon inductive discharge at low gas pressure is investigated in terms of the evolution of the electron energy distribution function (EEDF). Generally, the hysteresis phenomenon has been reported at high-pressure Ramsauer gas discharges. However, in neon plasma, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2022-09, Vol.29 (9)
Hauptverfasser: Hong, Young-Hun, Kim, Tae-Woo, Kim, Ju-Ho, Lim, Yeong-Min, Lee, Moo-Young, Chung, Chin-Wook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Physics of plasmas
container_volume 29
creator Hong, Young-Hun
Kim, Tae-Woo
Kim, Ju-Ho
Lim, Yeong-Min
Lee, Moo-Young
Chung, Chin-Wook
description A hysteresis phenomenon observed in neon inductive discharge at low gas pressure is investigated in terms of the evolution of the electron energy distribution function (EEDF). Generally, the hysteresis phenomenon has been reported at high-pressure Ramsauer gas discharges. However, in neon plasma, we found that the hysteresis phenomenon occurs even at low gas pressure (5 mTorr). Furthermore, the hysteresis vanishes with an increase in the gas pressure (10 and 25 mTorr). To analyze this hysteresis, the EEDF is measured depending on the radio frequency power. The EEDF at 10 mTorr sustains the bi-Maxwellian distribution during an E–H transition. On the other hand, the EEDF at 5 mTorr changes dramatically between discharge modes. At 5 mTorr, the measured EEDF for the E mode has the Maxwellian distribution due to high collisional heating in the bulk plasma. The EEDF for the H mode has the bi-Maxwellian distribution because collisionless heating in the skin depth is dominant. This apparent evolution of the EEDF causes a nonlinear energy loss due to collisions during the discharge mode transition. Therefore, the plasma can maintain the H mode discharge with high ionization efficiency, even at a lower applied power, which results in the hysteresis.
doi_str_mv 10.1063/5.0092091
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0092091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2713020097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-f2bab4e1dcf1f47fa0a7e1af845eb64764125c123a66ebeaeb953e2937d583263</originalsourceid><addsrcrecordid>eNqdkE1LAzEQhoMoWD8O_oMFTwpb87XJ7lFK_YCCFwVvIZudtCnr7ppkq_33prbgXRiYeZlnZpgXoSuCpwQLdldMMa4orsgRmhBcVrkUkh_vaolzIfj7KToLYY0x5qIoJ0jNvwfw7gO6qNvMdRsI0S11dH2XpYgryFbbEMFDcCH1s7b_yoekwugh6WY00W2g3WamH4cWmqyDNNe4YFbaL-ECnVjdBrg85HP09jB_nT3li5fH59n9Ije0lDG3tNY1B9IYSyyXVmMtgWhb8gJqwaXghBaGUKaFgBo01FXBgFZMNkXJqGDn6Hq_d_D955ieUOt-9F06qagkDNNki0zUzZ4yvg_Bg1VD-l37rSJY7fxThTr4l9jbPRuMi7-G_A_e9P4PVENj2Q907YCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2713020097</pqid></control><display><type>article</type><title>Experimental investigation on the hysteresis in low-pressure inductively coupled neon discharge</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Hong, Young-Hun ; Kim, Tae-Woo ; Kim, Ju-Ho ; Lim, Yeong-Min ; Lee, Moo-Young ; Chung, Chin-Wook</creator><creatorcontrib>Hong, Young-Hun ; Kim, Tae-Woo ; Kim, Ju-Ho ; Lim, Yeong-Min ; Lee, Moo-Young ; Chung, Chin-Wook</creatorcontrib><description>A hysteresis phenomenon observed in neon inductive discharge at low gas pressure is investigated in terms of the evolution of the electron energy distribution function (EEDF). Generally, the hysteresis phenomenon has been reported at high-pressure Ramsauer gas discharges. However, in neon plasma, we found that the hysteresis phenomenon occurs even at low gas pressure (5 mTorr). Furthermore, the hysteresis vanishes with an increase in the gas pressure (10 and 25 mTorr). To analyze this hysteresis, the EEDF is measured depending on the radio frequency power. The EEDF at 10 mTorr sustains the bi-Maxwellian distribution during an E–H transition. On the other hand, the EEDF at 5 mTorr changes dramatically between discharge modes. At 5 mTorr, the measured EEDF for the E mode has the Maxwellian distribution due to high collisional heating in the bulk plasma. The EEDF for the H mode has the bi-Maxwellian distribution because collisionless heating in the skin depth is dominant. This apparent evolution of the EEDF causes a nonlinear energy loss due to collisions during the discharge mode transition. Therefore, the plasma can maintain the H mode discharge with high ionization efficiency, even at a lower applied power, which results in the hysteresis.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0092091</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Distribution functions ; Electron energy distribution ; Evolution ; Gas discharges ; Gas pressure ; Heating ; Hysteresis ; Ions ; Low pressure ; Maxwellian distribution ; Neon ; Plasma physics</subject><ispartof>Physics of plasmas, 2022-09, Vol.29 (9)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-f2bab4e1dcf1f47fa0a7e1af845eb64764125c123a66ebeaeb953e2937d583263</cites><orcidid>0000-0003-4376-170X ; 0000-0002-7771-6547 ; 0000-0002-0721-4381 ; 0000-0001-9012-8275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0092091$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Hong, Young-Hun</creatorcontrib><creatorcontrib>Kim, Tae-Woo</creatorcontrib><creatorcontrib>Kim, Ju-Ho</creatorcontrib><creatorcontrib>Lim, Yeong-Min</creatorcontrib><creatorcontrib>Lee, Moo-Young</creatorcontrib><creatorcontrib>Chung, Chin-Wook</creatorcontrib><title>Experimental investigation on the hysteresis in low-pressure inductively coupled neon discharge</title><title>Physics of plasmas</title><description>A hysteresis phenomenon observed in neon inductive discharge at low gas pressure is investigated in terms of the evolution of the electron energy distribution function (EEDF). Generally, the hysteresis phenomenon has been reported at high-pressure Ramsauer gas discharges. However, in neon plasma, we found that the hysteresis phenomenon occurs even at low gas pressure (5 mTorr). Furthermore, the hysteresis vanishes with an increase in the gas pressure (10 and 25 mTorr). To analyze this hysteresis, the EEDF is measured depending on the radio frequency power. The EEDF at 10 mTorr sustains the bi-Maxwellian distribution during an E–H transition. On the other hand, the EEDF at 5 mTorr changes dramatically between discharge modes. At 5 mTorr, the measured EEDF for the E mode has the Maxwellian distribution due to high collisional heating in the bulk plasma. The EEDF for the H mode has the bi-Maxwellian distribution because collisionless heating in the skin depth is dominant. This apparent evolution of the EEDF causes a nonlinear energy loss due to collisions during the discharge mode transition. Therefore, the plasma can maintain the H mode discharge with high ionization efficiency, even at a lower applied power, which results in the hysteresis.</description><subject>Distribution functions</subject><subject>Electron energy distribution</subject><subject>Evolution</subject><subject>Gas discharges</subject><subject>Gas pressure</subject><subject>Heating</subject><subject>Hysteresis</subject><subject>Ions</subject><subject>Low pressure</subject><subject>Maxwellian distribution</subject><subject>Neon</subject><subject>Plasma physics</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LAzEQhoMoWD8O_oMFTwpb87XJ7lFK_YCCFwVvIZudtCnr7ppkq_33prbgXRiYeZlnZpgXoSuCpwQLdldMMa4orsgRmhBcVrkUkh_vaolzIfj7KToLYY0x5qIoJ0jNvwfw7gO6qNvMdRsI0S11dH2XpYgryFbbEMFDcCH1s7b_yoekwugh6WY00W2g3WamH4cWmqyDNNe4YFbaL-ECnVjdBrg85HP09jB_nT3li5fH59n9Ije0lDG3tNY1B9IYSyyXVmMtgWhb8gJqwaXghBaGUKaFgBo01FXBgFZMNkXJqGDn6Hq_d_D955ieUOt-9F06qagkDNNki0zUzZ4yvg_Bg1VD-l37rSJY7fxThTr4l9jbPRuMi7-G_A_e9P4PVENj2Q907YCM</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Hong, Young-Hun</creator><creator>Kim, Tae-Woo</creator><creator>Kim, Ju-Ho</creator><creator>Lim, Yeong-Min</creator><creator>Lee, Moo-Young</creator><creator>Chung, Chin-Wook</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4376-170X</orcidid><orcidid>https://orcid.org/0000-0002-7771-6547</orcidid><orcidid>https://orcid.org/0000-0002-0721-4381</orcidid><orcidid>https://orcid.org/0000-0001-9012-8275</orcidid></search><sort><creationdate>202209</creationdate><title>Experimental investigation on the hysteresis in low-pressure inductively coupled neon discharge</title><author>Hong, Young-Hun ; Kim, Tae-Woo ; Kim, Ju-Ho ; Lim, Yeong-Min ; Lee, Moo-Young ; Chung, Chin-Wook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-f2bab4e1dcf1f47fa0a7e1af845eb64764125c123a66ebeaeb953e2937d583263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Distribution functions</topic><topic>Electron energy distribution</topic><topic>Evolution</topic><topic>Gas discharges</topic><topic>Gas pressure</topic><topic>Heating</topic><topic>Hysteresis</topic><topic>Ions</topic><topic>Low pressure</topic><topic>Maxwellian distribution</topic><topic>Neon</topic><topic>Plasma physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Young-Hun</creatorcontrib><creatorcontrib>Kim, Tae-Woo</creatorcontrib><creatorcontrib>Kim, Ju-Ho</creatorcontrib><creatorcontrib>Lim, Yeong-Min</creatorcontrib><creatorcontrib>Lee, Moo-Young</creatorcontrib><creatorcontrib>Chung, Chin-Wook</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Young-Hun</au><au>Kim, Tae-Woo</au><au>Kim, Ju-Ho</au><au>Lim, Yeong-Min</au><au>Lee, Moo-Young</au><au>Chung, Chin-Wook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental investigation on the hysteresis in low-pressure inductively coupled neon discharge</atitle><jtitle>Physics of plasmas</jtitle><date>2022-09</date><risdate>2022</risdate><volume>29</volume><issue>9</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>A hysteresis phenomenon observed in neon inductive discharge at low gas pressure is investigated in terms of the evolution of the electron energy distribution function (EEDF). Generally, the hysteresis phenomenon has been reported at high-pressure Ramsauer gas discharges. However, in neon plasma, we found that the hysteresis phenomenon occurs even at low gas pressure (5 mTorr). Furthermore, the hysteresis vanishes with an increase in the gas pressure (10 and 25 mTorr). To analyze this hysteresis, the EEDF is measured depending on the radio frequency power. The EEDF at 10 mTorr sustains the bi-Maxwellian distribution during an E–H transition. On the other hand, the EEDF at 5 mTorr changes dramatically between discharge modes. At 5 mTorr, the measured EEDF for the E mode has the Maxwellian distribution due to high collisional heating in the bulk plasma. The EEDF for the H mode has the bi-Maxwellian distribution because collisionless heating in the skin depth is dominant. This apparent evolution of the EEDF causes a nonlinear energy loss due to collisions during the discharge mode transition. Therefore, the plasma can maintain the H mode discharge with high ionization efficiency, even at a lower applied power, which results in the hysteresis.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0092091</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4376-170X</orcidid><orcidid>https://orcid.org/0000-0002-7771-6547</orcidid><orcidid>https://orcid.org/0000-0002-0721-4381</orcidid><orcidid>https://orcid.org/0000-0001-9012-8275</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2022-09, Vol.29 (9)
issn 1070-664X
1089-7674
language eng
recordid cdi_scitation_primary_10_1063_5_0092091
source AIP Journals Complete; Alma/SFX Local Collection
subjects Distribution functions
Electron energy distribution
Evolution
Gas discharges
Gas pressure
Heating
Hysteresis
Ions
Low pressure
Maxwellian distribution
Neon
Plasma physics
title Experimental investigation on the hysteresis in low-pressure inductively coupled neon discharge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A03%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20investigation%20on%20the%20hysteresis%20in%20low-pressure%20inductively%20coupled%20neon%20discharge&rft.jtitle=Physics%20of%20plasmas&rft.au=Hong,%20Young-Hun&rft.date=2022-09&rft.volume=29&rft.issue=9&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0092091&rft_dat=%3Cproquest_scita%3E2713020097%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2713020097&rft_id=info:pmid/&rfr_iscdi=true