Experimental investigation on the hysteresis in low-pressure inductively coupled neon discharge
A hysteresis phenomenon observed in neon inductive discharge at low gas pressure is investigated in terms of the evolution of the electron energy distribution function (EEDF). Generally, the hysteresis phenomenon has been reported at high-pressure Ramsauer gas discharges. However, in neon plasma, we...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2022-09, Vol.29 (9) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 29 |
creator | Hong, Young-Hun Kim, Tae-Woo Kim, Ju-Ho Lim, Yeong-Min Lee, Moo-Young Chung, Chin-Wook |
description | A hysteresis phenomenon observed in neon inductive discharge at low gas pressure is investigated in terms of the evolution of the electron energy distribution function (EEDF). Generally, the hysteresis phenomenon has been reported at high-pressure Ramsauer gas discharges. However, in neon plasma, we found that the hysteresis phenomenon occurs even at low gas pressure (5 mTorr). Furthermore, the hysteresis vanishes with an increase in the gas pressure (10 and 25 mTorr). To analyze this hysteresis, the EEDF is measured depending on the radio frequency power. The EEDF at 10 mTorr sustains the bi-Maxwellian distribution during an E–H transition. On the other hand, the EEDF at 5 mTorr changes dramatically between discharge modes. At 5 mTorr, the measured EEDF for the E mode has the Maxwellian distribution due to high collisional heating in the bulk plasma. The EEDF for the H mode has the bi-Maxwellian distribution because collisionless heating in the skin depth is dominant. This apparent evolution of the EEDF causes a nonlinear energy loss due to collisions during the discharge mode transition. Therefore, the plasma can maintain the H mode discharge with high ionization efficiency, even at a lower applied power, which results in the hysteresis. |
doi_str_mv | 10.1063/5.0092091 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0092091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2713020097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-f2bab4e1dcf1f47fa0a7e1af845eb64764125c123a66ebeaeb953e2937d583263</originalsourceid><addsrcrecordid>eNqdkE1LAzEQhoMoWD8O_oMFTwpb87XJ7lFK_YCCFwVvIZudtCnr7ppkq_33prbgXRiYeZlnZpgXoSuCpwQLdldMMa4orsgRmhBcVrkUkh_vaolzIfj7KToLYY0x5qIoJ0jNvwfw7gO6qNvMdRsI0S11dH2XpYgryFbbEMFDcCH1s7b_yoekwugh6WY00W2g3WamH4cWmqyDNNe4YFbaL-ECnVjdBrg85HP09jB_nT3li5fH59n9Ije0lDG3tNY1B9IYSyyXVmMtgWhb8gJqwaXghBaGUKaFgBo01FXBgFZMNkXJqGDn6Hq_d_D955ieUOt-9F06qagkDNNki0zUzZ4yvg_Bg1VD-l37rSJY7fxThTr4l9jbPRuMi7-G_A_e9P4PVENj2Q907YCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2713020097</pqid></control><display><type>article</type><title>Experimental investigation on the hysteresis in low-pressure inductively coupled neon discharge</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Hong, Young-Hun ; Kim, Tae-Woo ; Kim, Ju-Ho ; Lim, Yeong-Min ; Lee, Moo-Young ; Chung, Chin-Wook</creator><creatorcontrib>Hong, Young-Hun ; Kim, Tae-Woo ; Kim, Ju-Ho ; Lim, Yeong-Min ; Lee, Moo-Young ; Chung, Chin-Wook</creatorcontrib><description>A hysteresis phenomenon observed in neon inductive discharge at low gas pressure is investigated in terms of the evolution of the electron energy distribution function (EEDF). Generally, the hysteresis phenomenon has been reported at high-pressure Ramsauer gas discharges. However, in neon plasma, we found that the hysteresis phenomenon occurs even at low gas pressure (5 mTorr). Furthermore, the hysteresis vanishes with an increase in the gas pressure (10 and 25 mTorr). To analyze this hysteresis, the EEDF is measured depending on the radio frequency power. The EEDF at 10 mTorr sustains the bi-Maxwellian distribution during an E–H transition. On the other hand, the EEDF at 5 mTorr changes dramatically between discharge modes. At 5 mTorr, the measured EEDF for the E mode has the Maxwellian distribution due to high collisional heating in the bulk plasma. The EEDF for the H mode has the bi-Maxwellian distribution because collisionless heating in the skin depth is dominant. This apparent evolution of the EEDF causes a nonlinear energy loss due to collisions during the discharge mode transition. Therefore, the plasma can maintain the H mode discharge with high ionization efficiency, even at a lower applied power, which results in the hysteresis.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0092091</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Distribution functions ; Electron energy distribution ; Evolution ; Gas discharges ; Gas pressure ; Heating ; Hysteresis ; Ions ; Low pressure ; Maxwellian distribution ; Neon ; Plasma physics</subject><ispartof>Physics of plasmas, 2022-09, Vol.29 (9)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-f2bab4e1dcf1f47fa0a7e1af845eb64764125c123a66ebeaeb953e2937d583263</cites><orcidid>0000-0003-4376-170X ; 0000-0002-7771-6547 ; 0000-0002-0721-4381 ; 0000-0001-9012-8275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0092091$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Hong, Young-Hun</creatorcontrib><creatorcontrib>Kim, Tae-Woo</creatorcontrib><creatorcontrib>Kim, Ju-Ho</creatorcontrib><creatorcontrib>Lim, Yeong-Min</creatorcontrib><creatorcontrib>Lee, Moo-Young</creatorcontrib><creatorcontrib>Chung, Chin-Wook</creatorcontrib><title>Experimental investigation on the hysteresis in low-pressure inductively coupled neon discharge</title><title>Physics of plasmas</title><description>A hysteresis phenomenon observed in neon inductive discharge at low gas pressure is investigated in terms of the evolution of the electron energy distribution function (EEDF). Generally, the hysteresis phenomenon has been reported at high-pressure Ramsauer gas discharges. However, in neon plasma, we found that the hysteresis phenomenon occurs even at low gas pressure (5 mTorr). Furthermore, the hysteresis vanishes with an increase in the gas pressure (10 and 25 mTorr). To analyze this hysteresis, the EEDF is measured depending on the radio frequency power. The EEDF at 10 mTorr sustains the bi-Maxwellian distribution during an E–H transition. On the other hand, the EEDF at 5 mTorr changes dramatically between discharge modes. At 5 mTorr, the measured EEDF for the E mode has the Maxwellian distribution due to high collisional heating in the bulk plasma. The EEDF for the H mode has the bi-Maxwellian distribution because collisionless heating in the skin depth is dominant. This apparent evolution of the EEDF causes a nonlinear energy loss due to collisions during the discharge mode transition. Therefore, the plasma can maintain the H mode discharge with high ionization efficiency, even at a lower applied power, which results in the hysteresis.</description><subject>Distribution functions</subject><subject>Electron energy distribution</subject><subject>Evolution</subject><subject>Gas discharges</subject><subject>Gas pressure</subject><subject>Heating</subject><subject>Hysteresis</subject><subject>Ions</subject><subject>Low pressure</subject><subject>Maxwellian distribution</subject><subject>Neon</subject><subject>Plasma physics</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LAzEQhoMoWD8O_oMFTwpb87XJ7lFK_YCCFwVvIZudtCnr7ppkq_33prbgXRiYeZlnZpgXoSuCpwQLdldMMa4orsgRmhBcVrkUkh_vaolzIfj7KToLYY0x5qIoJ0jNvwfw7gO6qNvMdRsI0S11dH2XpYgryFbbEMFDcCH1s7b_yoekwugh6WY00W2g3WamH4cWmqyDNNe4YFbaL-ECnVjdBrg85HP09jB_nT3li5fH59n9Ije0lDG3tNY1B9IYSyyXVmMtgWhb8gJqwaXghBaGUKaFgBo01FXBgFZMNkXJqGDn6Hq_d_D955ieUOt-9F06qagkDNNki0zUzZ4yvg_Bg1VD-l37rSJY7fxThTr4l9jbPRuMi7-G_A_e9P4PVENj2Q907YCM</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Hong, Young-Hun</creator><creator>Kim, Tae-Woo</creator><creator>Kim, Ju-Ho</creator><creator>Lim, Yeong-Min</creator><creator>Lee, Moo-Young</creator><creator>Chung, Chin-Wook</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4376-170X</orcidid><orcidid>https://orcid.org/0000-0002-7771-6547</orcidid><orcidid>https://orcid.org/0000-0002-0721-4381</orcidid><orcidid>https://orcid.org/0000-0001-9012-8275</orcidid></search><sort><creationdate>202209</creationdate><title>Experimental investigation on the hysteresis in low-pressure inductively coupled neon discharge</title><author>Hong, Young-Hun ; Kim, Tae-Woo ; Kim, Ju-Ho ; Lim, Yeong-Min ; Lee, Moo-Young ; Chung, Chin-Wook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-f2bab4e1dcf1f47fa0a7e1af845eb64764125c123a66ebeaeb953e2937d583263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Distribution functions</topic><topic>Electron energy distribution</topic><topic>Evolution</topic><topic>Gas discharges</topic><topic>Gas pressure</topic><topic>Heating</topic><topic>Hysteresis</topic><topic>Ions</topic><topic>Low pressure</topic><topic>Maxwellian distribution</topic><topic>Neon</topic><topic>Plasma physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Young-Hun</creatorcontrib><creatorcontrib>Kim, Tae-Woo</creatorcontrib><creatorcontrib>Kim, Ju-Ho</creatorcontrib><creatorcontrib>Lim, Yeong-Min</creatorcontrib><creatorcontrib>Lee, Moo-Young</creatorcontrib><creatorcontrib>Chung, Chin-Wook</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Young-Hun</au><au>Kim, Tae-Woo</au><au>Kim, Ju-Ho</au><au>Lim, Yeong-Min</au><au>Lee, Moo-Young</au><au>Chung, Chin-Wook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental investigation on the hysteresis in low-pressure inductively coupled neon discharge</atitle><jtitle>Physics of plasmas</jtitle><date>2022-09</date><risdate>2022</risdate><volume>29</volume><issue>9</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>A hysteresis phenomenon observed in neon inductive discharge at low gas pressure is investigated in terms of the evolution of the electron energy distribution function (EEDF). Generally, the hysteresis phenomenon has been reported at high-pressure Ramsauer gas discharges. However, in neon plasma, we found that the hysteresis phenomenon occurs even at low gas pressure (5 mTorr). Furthermore, the hysteresis vanishes with an increase in the gas pressure (10 and 25 mTorr). To analyze this hysteresis, the EEDF is measured depending on the radio frequency power. The EEDF at 10 mTorr sustains the bi-Maxwellian distribution during an E–H transition. On the other hand, the EEDF at 5 mTorr changes dramatically between discharge modes. At 5 mTorr, the measured EEDF for the E mode has the Maxwellian distribution due to high collisional heating in the bulk plasma. The EEDF for the H mode has the bi-Maxwellian distribution because collisionless heating in the skin depth is dominant. This apparent evolution of the EEDF causes a nonlinear energy loss due to collisions during the discharge mode transition. Therefore, the plasma can maintain the H mode discharge with high ionization efficiency, even at a lower applied power, which results in the hysteresis.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0092091</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4376-170X</orcidid><orcidid>https://orcid.org/0000-0002-7771-6547</orcidid><orcidid>https://orcid.org/0000-0002-0721-4381</orcidid><orcidid>https://orcid.org/0000-0001-9012-8275</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2022-09, Vol.29 (9) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0092091 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Distribution functions Electron energy distribution Evolution Gas discharges Gas pressure Heating Hysteresis Ions Low pressure Maxwellian distribution Neon Plasma physics |
title | Experimental investigation on the hysteresis in low-pressure inductively coupled neon discharge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A03%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20investigation%20on%20the%20hysteresis%20in%20low-pressure%20inductively%20coupled%20neon%20discharge&rft.jtitle=Physics%20of%20plasmas&rft.au=Hong,%20Young-Hun&rft.date=2022-09&rft.volume=29&rft.issue=9&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0092091&rft_dat=%3Cproquest_scita%3E2713020097%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2713020097&rft_id=info:pmid/&rfr_iscdi=true |