Interplay of diffusio- and thermo-osmotic flows generated by single light stimulus

Flow control is a highly relevant topic for micromanipulation of colloidal particles in microfluidic applications. Here, we report on a system that combines two-surface bound flows emanating from thermo-osmotic and diffusio-osmotic mechanisms. These opposing flows are generated at a gold surface imm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2022-06, Vol.120 (23)
Hauptverfasser: Muraveva, Valeriia, Bekir, Marek, Lomadze, Nino, Großmann, Robert, Beta, Carsten, Santer, Svetlana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page
container_title Applied physics letters
container_volume 120
creator Muraveva, Valeriia
Bekir, Marek
Lomadze, Nino
Großmann, Robert
Beta, Carsten
Santer, Svetlana
description Flow control is a highly relevant topic for micromanipulation of colloidal particles in microfluidic applications. Here, we report on a system that combines two-surface bound flows emanating from thermo-osmotic and diffusio-osmotic mechanisms. These opposing flows are generated at a gold surface immersed into an aqueous solution containing a photo-sensitive surfactant, which is irradiated by a focused UV laser beam. At low power of incoming light, diffusio-osmotic flow due to local photo-isomerization of the surfactant dominates, resulting in a flow pattern oriented away from the irradiated area. In contrast, thermo-osmotic flow takes over due to local heating of the gold surface at larger power, consequently inducing a flow pointing toward the hotspot. In this way, this system allows one to reversibly switch from outward to inward liquid flow with an intermittent range of zero flow at which tracer particles undergo thermal motion by just tuning the laser intensity only. Our work, thus, demonstrates an optofluidic system for flow generation with a high degree of controllability that is necessary to transport particles precisely to desired locations, thereby opening innovative possibilities to generate advanced microfluidic applications.
doi_str_mv 10.1063/5.0090229
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0090229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2673692962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-f91e2690f1f8783610a06b37b11c02addb64336ed99bdc68aebff1a7e23fd10b3</originalsourceid><addsrcrecordid>eNp90F9LwzAUBfAgCs7pg98g4JNC502yps2jDP8MBoLoc0ibZMtom5qkyr69lQ19EHy6XPhxDhyELgnMCHB2m88ABFAqjtCEQFFkjJDyGE0AgGVc5OQUncW4Hd-cMjZBL8sumdA3aoe9xdpZO0TnM6w6jdPGhNZnPrY-uRrbxn9GvDadCSoZjasdjq5bNwY3br1JOCbXDs0Qz9GJVU00F4c7RW8P96-Lp2z1_Lhc3K2yms5pyqwghnIBltiyKBknoIBXrKgIqYEqrSs-Z4wbLUSla14qU1lLVGEos5pAxaboap_bB_8-mJjk1g-hGysl5QXjggpOR3W9V3XwMQZjZR9cq8JOEpDfk8lcHiYb7c3extollZzvfvCHD79Q9tr-h_8mfwFI9Hp1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673692962</pqid></control><display><type>article</type><title>Interplay of diffusio- and thermo-osmotic flows generated by single light stimulus</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Muraveva, Valeriia ; Bekir, Marek ; Lomadze, Nino ; Großmann, Robert ; Beta, Carsten ; Santer, Svetlana</creator><creatorcontrib>Muraveva, Valeriia ; Bekir, Marek ; Lomadze, Nino ; Großmann, Robert ; Beta, Carsten ; Santer, Svetlana</creatorcontrib><description>Flow control is a highly relevant topic for micromanipulation of colloidal particles in microfluidic applications. Here, we report on a system that combines two-surface bound flows emanating from thermo-osmotic and diffusio-osmotic mechanisms. These opposing flows are generated at a gold surface immersed into an aqueous solution containing a photo-sensitive surfactant, which is irradiated by a focused UV laser beam. At low power of incoming light, diffusio-osmotic flow due to local photo-isomerization of the surfactant dominates, resulting in a flow pattern oriented away from the irradiated area. In contrast, thermo-osmotic flow takes over due to local heating of the gold surface at larger power, consequently inducing a flow pointing toward the hotspot. In this way, this system allows one to reversibly switch from outward to inward liquid flow with an intermittent range of zero flow at which tracer particles undergo thermal motion by just tuning the laser intensity only. Our work, thus, demonstrates an optofluidic system for flow generation with a high degree of controllability that is necessary to transport particles precisely to desired locations, thereby opening innovative possibilities to generate advanced microfluidic applications.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0090229</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Aqueous solutions ; Flow control ; Flow distribution ; Gold ; Isomerization ; Laser beams ; Liquid flow ; Microfluidics ; Micromanipulation ; Surfactants ; Tracer particles ; Ultraviolet lasers</subject><ispartof>Applied physics letters, 2022-06, Vol.120 (23)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c242t-f91e2690f1f8783610a06b37b11c02addb64336ed99bdc68aebff1a7e23fd10b3</citedby><cites>FETCH-LOGICAL-c242t-f91e2690f1f8783610a06b37b11c02addb64336ed99bdc68aebff1a7e23fd10b3</cites><orcidid>0000-0002-9817-2032 ; 0000-0002-0100-1043 ; 0000-0002-5041-3650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0090229$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids></links><search><creatorcontrib>Muraveva, Valeriia</creatorcontrib><creatorcontrib>Bekir, Marek</creatorcontrib><creatorcontrib>Lomadze, Nino</creatorcontrib><creatorcontrib>Großmann, Robert</creatorcontrib><creatorcontrib>Beta, Carsten</creatorcontrib><creatorcontrib>Santer, Svetlana</creatorcontrib><title>Interplay of diffusio- and thermo-osmotic flows generated by single light stimulus</title><title>Applied physics letters</title><description>Flow control is a highly relevant topic for micromanipulation of colloidal particles in microfluidic applications. Here, we report on a system that combines two-surface bound flows emanating from thermo-osmotic and diffusio-osmotic mechanisms. These opposing flows are generated at a gold surface immersed into an aqueous solution containing a photo-sensitive surfactant, which is irradiated by a focused UV laser beam. At low power of incoming light, diffusio-osmotic flow due to local photo-isomerization of the surfactant dominates, resulting in a flow pattern oriented away from the irradiated area. In contrast, thermo-osmotic flow takes over due to local heating of the gold surface at larger power, consequently inducing a flow pointing toward the hotspot. In this way, this system allows one to reversibly switch from outward to inward liquid flow with an intermittent range of zero flow at which tracer particles undergo thermal motion by just tuning the laser intensity only. Our work, thus, demonstrates an optofluidic system for flow generation with a high degree of controllability that is necessary to transport particles precisely to desired locations, thereby opening innovative possibilities to generate advanced microfluidic applications.</description><subject>Applied physics</subject><subject>Aqueous solutions</subject><subject>Flow control</subject><subject>Flow distribution</subject><subject>Gold</subject><subject>Isomerization</subject><subject>Laser beams</subject><subject>Liquid flow</subject><subject>Microfluidics</subject><subject>Micromanipulation</subject><subject>Surfactants</subject><subject>Tracer particles</subject><subject>Ultraviolet lasers</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90F9LwzAUBfAgCs7pg98g4JNC502yps2jDP8MBoLoc0ibZMtom5qkyr69lQ19EHy6XPhxDhyELgnMCHB2m88ABFAqjtCEQFFkjJDyGE0AgGVc5OQUncW4Hd-cMjZBL8sumdA3aoe9xdpZO0TnM6w6jdPGhNZnPrY-uRrbxn9GvDadCSoZjasdjq5bNwY3br1JOCbXDs0Qz9GJVU00F4c7RW8P96-Lp2z1_Lhc3K2yms5pyqwghnIBltiyKBknoIBXrKgIqYEqrSs-Z4wbLUSla14qU1lLVGEos5pAxaboap_bB_8-mJjk1g-hGysl5QXjggpOR3W9V3XwMQZjZR9cq8JOEpDfk8lcHiYb7c3extollZzvfvCHD79Q9tr-h_8mfwFI9Hp1</recordid><startdate>20220606</startdate><enddate>20220606</enddate><creator>Muraveva, Valeriia</creator><creator>Bekir, Marek</creator><creator>Lomadze, Nino</creator><creator>Großmann, Robert</creator><creator>Beta, Carsten</creator><creator>Santer, Svetlana</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9817-2032</orcidid><orcidid>https://orcid.org/0000-0002-0100-1043</orcidid><orcidid>https://orcid.org/0000-0002-5041-3650</orcidid></search><sort><creationdate>20220606</creationdate><title>Interplay of diffusio- and thermo-osmotic flows generated by single light stimulus</title><author>Muraveva, Valeriia ; Bekir, Marek ; Lomadze, Nino ; Großmann, Robert ; Beta, Carsten ; Santer, Svetlana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-f91e2690f1f8783610a06b37b11c02addb64336ed99bdc68aebff1a7e23fd10b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Aqueous solutions</topic><topic>Flow control</topic><topic>Flow distribution</topic><topic>Gold</topic><topic>Isomerization</topic><topic>Laser beams</topic><topic>Liquid flow</topic><topic>Microfluidics</topic><topic>Micromanipulation</topic><topic>Surfactants</topic><topic>Tracer particles</topic><topic>Ultraviolet lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muraveva, Valeriia</creatorcontrib><creatorcontrib>Bekir, Marek</creatorcontrib><creatorcontrib>Lomadze, Nino</creatorcontrib><creatorcontrib>Großmann, Robert</creatorcontrib><creatorcontrib>Beta, Carsten</creatorcontrib><creatorcontrib>Santer, Svetlana</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muraveva, Valeriia</au><au>Bekir, Marek</au><au>Lomadze, Nino</au><au>Großmann, Robert</au><au>Beta, Carsten</au><au>Santer, Svetlana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interplay of diffusio- and thermo-osmotic flows generated by single light stimulus</atitle><jtitle>Applied physics letters</jtitle><date>2022-06-06</date><risdate>2022</risdate><volume>120</volume><issue>23</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Flow control is a highly relevant topic for micromanipulation of colloidal particles in microfluidic applications. Here, we report on a system that combines two-surface bound flows emanating from thermo-osmotic and diffusio-osmotic mechanisms. These opposing flows are generated at a gold surface immersed into an aqueous solution containing a photo-sensitive surfactant, which is irradiated by a focused UV laser beam. At low power of incoming light, diffusio-osmotic flow due to local photo-isomerization of the surfactant dominates, resulting in a flow pattern oriented away from the irradiated area. In contrast, thermo-osmotic flow takes over due to local heating of the gold surface at larger power, consequently inducing a flow pointing toward the hotspot. In this way, this system allows one to reversibly switch from outward to inward liquid flow with an intermittent range of zero flow at which tracer particles undergo thermal motion by just tuning the laser intensity only. Our work, thus, demonstrates an optofluidic system for flow generation with a high degree of controllability that is necessary to transport particles precisely to desired locations, thereby opening innovative possibilities to generate advanced microfluidic applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0090229</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9817-2032</orcidid><orcidid>https://orcid.org/0000-0002-0100-1043</orcidid><orcidid>https://orcid.org/0000-0002-5041-3650</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2022-06, Vol.120 (23)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_5_0090229
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Aqueous solutions
Flow control
Flow distribution
Gold
Isomerization
Laser beams
Liquid flow
Microfluidics
Micromanipulation
Surfactants
Tracer particles
Ultraviolet lasers
title Interplay of diffusio- and thermo-osmotic flows generated by single light stimulus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A30%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interplay%20of%20diffusio-%20and%20thermo-osmotic%20flows%20generated%20by%20single%20light%20stimulus&rft.jtitle=Applied%20physics%20letters&rft.au=Muraveva,%20Valeriia&rft.date=2022-06-06&rft.volume=120&rft.issue=23&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0090229&rft_dat=%3Cproquest_scita%3E2673692962%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673692962&rft_id=info:pmid/&rfr_iscdi=true