Interplay of diffusio- and thermo-osmotic flows generated by single light stimulus
Flow control is a highly relevant topic for micromanipulation of colloidal particles in microfluidic applications. Here, we report on a system that combines two-surface bound flows emanating from thermo-osmotic and diffusio-osmotic mechanisms. These opposing flows are generated at a gold surface imm...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2022-06, Vol.120 (23) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 120 |
creator | Muraveva, Valeriia Bekir, Marek Lomadze, Nino Großmann, Robert Beta, Carsten Santer, Svetlana |
description | Flow control is a highly relevant topic for micromanipulation of colloidal particles in microfluidic applications. Here, we report on a system that combines two-surface bound flows emanating from thermo-osmotic and diffusio-osmotic mechanisms. These opposing flows are generated at a gold surface immersed into an aqueous solution containing a photo-sensitive surfactant, which is irradiated by a focused UV laser beam. At low power of incoming light, diffusio-osmotic flow due to local photo-isomerization of the surfactant dominates, resulting in a flow pattern oriented away from the irradiated area. In contrast, thermo-osmotic flow takes over due to local heating of the gold surface at larger power, consequently inducing a flow pointing toward the hotspot. In this way, this system allows one to reversibly switch from outward to inward liquid flow with an intermittent range of zero flow at which tracer particles undergo thermal motion by just tuning the laser intensity only. Our work, thus, demonstrates an optofluidic system for flow generation with a high degree of controllability that is necessary to transport particles precisely to desired locations, thereby opening innovative possibilities to generate advanced microfluidic applications. |
doi_str_mv | 10.1063/5.0090229 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0090229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2673692962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-f91e2690f1f8783610a06b37b11c02addb64336ed99bdc68aebff1a7e23fd10b3</originalsourceid><addsrcrecordid>eNp90F9LwzAUBfAgCs7pg98g4JNC502yps2jDP8MBoLoc0ibZMtom5qkyr69lQ19EHy6XPhxDhyELgnMCHB2m88ABFAqjtCEQFFkjJDyGE0AgGVc5OQUncW4Hd-cMjZBL8sumdA3aoe9xdpZO0TnM6w6jdPGhNZnPrY-uRrbxn9GvDadCSoZjasdjq5bNwY3br1JOCbXDs0Qz9GJVU00F4c7RW8P96-Lp2z1_Lhc3K2yms5pyqwghnIBltiyKBknoIBXrKgIqYEqrSs-Z4wbLUSla14qU1lLVGEos5pAxaboap_bB_8-mJjk1g-hGysl5QXjggpOR3W9V3XwMQZjZR9cq8JOEpDfk8lcHiYb7c3extollZzvfvCHD79Q9tr-h_8mfwFI9Hp1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673692962</pqid></control><display><type>article</type><title>Interplay of diffusio- and thermo-osmotic flows generated by single light stimulus</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Muraveva, Valeriia ; Bekir, Marek ; Lomadze, Nino ; Großmann, Robert ; Beta, Carsten ; Santer, Svetlana</creator><creatorcontrib>Muraveva, Valeriia ; Bekir, Marek ; Lomadze, Nino ; Großmann, Robert ; Beta, Carsten ; Santer, Svetlana</creatorcontrib><description>Flow control is a highly relevant topic for micromanipulation of colloidal particles in microfluidic applications. Here, we report on a system that combines two-surface bound flows emanating from thermo-osmotic and diffusio-osmotic mechanisms. These opposing flows are generated at a gold surface immersed into an aqueous solution containing a photo-sensitive surfactant, which is irradiated by a focused UV laser beam. At low power of incoming light, diffusio-osmotic flow due to local photo-isomerization of the surfactant dominates, resulting in a flow pattern oriented away from the irradiated area. In contrast, thermo-osmotic flow takes over due to local heating of the gold surface at larger power, consequently inducing a flow pointing toward the hotspot. In this way, this system allows one to reversibly switch from outward to inward liquid flow with an intermittent range of zero flow at which tracer particles undergo thermal motion by just tuning the laser intensity only. Our work, thus, demonstrates an optofluidic system for flow generation with a high degree of controllability that is necessary to transport particles precisely to desired locations, thereby opening innovative possibilities to generate advanced microfluidic applications.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0090229</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Aqueous solutions ; Flow control ; Flow distribution ; Gold ; Isomerization ; Laser beams ; Liquid flow ; Microfluidics ; Micromanipulation ; Surfactants ; Tracer particles ; Ultraviolet lasers</subject><ispartof>Applied physics letters, 2022-06, Vol.120 (23)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c242t-f91e2690f1f8783610a06b37b11c02addb64336ed99bdc68aebff1a7e23fd10b3</citedby><cites>FETCH-LOGICAL-c242t-f91e2690f1f8783610a06b37b11c02addb64336ed99bdc68aebff1a7e23fd10b3</cites><orcidid>0000-0002-9817-2032 ; 0000-0002-0100-1043 ; 0000-0002-5041-3650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0090229$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids></links><search><creatorcontrib>Muraveva, Valeriia</creatorcontrib><creatorcontrib>Bekir, Marek</creatorcontrib><creatorcontrib>Lomadze, Nino</creatorcontrib><creatorcontrib>Großmann, Robert</creatorcontrib><creatorcontrib>Beta, Carsten</creatorcontrib><creatorcontrib>Santer, Svetlana</creatorcontrib><title>Interplay of diffusio- and thermo-osmotic flows generated by single light stimulus</title><title>Applied physics letters</title><description>Flow control is a highly relevant topic for micromanipulation of colloidal particles in microfluidic applications. Here, we report on a system that combines two-surface bound flows emanating from thermo-osmotic and diffusio-osmotic mechanisms. These opposing flows are generated at a gold surface immersed into an aqueous solution containing a photo-sensitive surfactant, which is irradiated by a focused UV laser beam. At low power of incoming light, diffusio-osmotic flow due to local photo-isomerization of the surfactant dominates, resulting in a flow pattern oriented away from the irradiated area. In contrast, thermo-osmotic flow takes over due to local heating of the gold surface at larger power, consequently inducing a flow pointing toward the hotspot. In this way, this system allows one to reversibly switch from outward to inward liquid flow with an intermittent range of zero flow at which tracer particles undergo thermal motion by just tuning the laser intensity only. Our work, thus, demonstrates an optofluidic system for flow generation with a high degree of controllability that is necessary to transport particles precisely to desired locations, thereby opening innovative possibilities to generate advanced microfluidic applications.</description><subject>Applied physics</subject><subject>Aqueous solutions</subject><subject>Flow control</subject><subject>Flow distribution</subject><subject>Gold</subject><subject>Isomerization</subject><subject>Laser beams</subject><subject>Liquid flow</subject><subject>Microfluidics</subject><subject>Micromanipulation</subject><subject>Surfactants</subject><subject>Tracer particles</subject><subject>Ultraviolet lasers</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90F9LwzAUBfAgCs7pg98g4JNC502yps2jDP8MBoLoc0ibZMtom5qkyr69lQ19EHy6XPhxDhyELgnMCHB2m88ABFAqjtCEQFFkjJDyGE0AgGVc5OQUncW4Hd-cMjZBL8sumdA3aoe9xdpZO0TnM6w6jdPGhNZnPrY-uRrbxn9GvDadCSoZjasdjq5bNwY3br1JOCbXDs0Qz9GJVU00F4c7RW8P96-Lp2z1_Lhc3K2yms5pyqwghnIBltiyKBknoIBXrKgIqYEqrSs-Z4wbLUSla14qU1lLVGEos5pAxaboap_bB_8-mJjk1g-hGysl5QXjggpOR3W9V3XwMQZjZR9cq8JOEpDfk8lcHiYb7c3extollZzvfvCHD79Q9tr-h_8mfwFI9Hp1</recordid><startdate>20220606</startdate><enddate>20220606</enddate><creator>Muraveva, Valeriia</creator><creator>Bekir, Marek</creator><creator>Lomadze, Nino</creator><creator>Großmann, Robert</creator><creator>Beta, Carsten</creator><creator>Santer, Svetlana</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9817-2032</orcidid><orcidid>https://orcid.org/0000-0002-0100-1043</orcidid><orcidid>https://orcid.org/0000-0002-5041-3650</orcidid></search><sort><creationdate>20220606</creationdate><title>Interplay of diffusio- and thermo-osmotic flows generated by single light stimulus</title><author>Muraveva, Valeriia ; Bekir, Marek ; Lomadze, Nino ; Großmann, Robert ; Beta, Carsten ; Santer, Svetlana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-f91e2690f1f8783610a06b37b11c02addb64336ed99bdc68aebff1a7e23fd10b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Aqueous solutions</topic><topic>Flow control</topic><topic>Flow distribution</topic><topic>Gold</topic><topic>Isomerization</topic><topic>Laser beams</topic><topic>Liquid flow</topic><topic>Microfluidics</topic><topic>Micromanipulation</topic><topic>Surfactants</topic><topic>Tracer particles</topic><topic>Ultraviolet lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muraveva, Valeriia</creatorcontrib><creatorcontrib>Bekir, Marek</creatorcontrib><creatorcontrib>Lomadze, Nino</creatorcontrib><creatorcontrib>Großmann, Robert</creatorcontrib><creatorcontrib>Beta, Carsten</creatorcontrib><creatorcontrib>Santer, Svetlana</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muraveva, Valeriia</au><au>Bekir, Marek</au><au>Lomadze, Nino</au><au>Großmann, Robert</au><au>Beta, Carsten</au><au>Santer, Svetlana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interplay of diffusio- and thermo-osmotic flows generated by single light stimulus</atitle><jtitle>Applied physics letters</jtitle><date>2022-06-06</date><risdate>2022</risdate><volume>120</volume><issue>23</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Flow control is a highly relevant topic for micromanipulation of colloidal particles in microfluidic applications. Here, we report on a system that combines two-surface bound flows emanating from thermo-osmotic and diffusio-osmotic mechanisms. These opposing flows are generated at a gold surface immersed into an aqueous solution containing a photo-sensitive surfactant, which is irradiated by a focused UV laser beam. At low power of incoming light, diffusio-osmotic flow due to local photo-isomerization of the surfactant dominates, resulting in a flow pattern oriented away from the irradiated area. In contrast, thermo-osmotic flow takes over due to local heating of the gold surface at larger power, consequently inducing a flow pointing toward the hotspot. In this way, this system allows one to reversibly switch from outward to inward liquid flow with an intermittent range of zero flow at which tracer particles undergo thermal motion by just tuning the laser intensity only. Our work, thus, demonstrates an optofluidic system for flow generation with a high degree of controllability that is necessary to transport particles precisely to desired locations, thereby opening innovative possibilities to generate advanced microfluidic applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0090229</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9817-2032</orcidid><orcidid>https://orcid.org/0000-0002-0100-1043</orcidid><orcidid>https://orcid.org/0000-0002-5041-3650</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2022-06, Vol.120 (23) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0090229 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Aqueous solutions Flow control Flow distribution Gold Isomerization Laser beams Liquid flow Microfluidics Micromanipulation Surfactants Tracer particles Ultraviolet lasers |
title | Interplay of diffusio- and thermo-osmotic flows generated by single light stimulus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A30%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interplay%20of%20diffusio-%20and%20thermo-osmotic%20flows%20generated%20by%20single%20light%20stimulus&rft.jtitle=Applied%20physics%20letters&rft.au=Muraveva,%20Valeriia&rft.date=2022-06-06&rft.volume=120&rft.issue=23&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0090229&rft_dat=%3Cproquest_scita%3E2673692962%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673692962&rft_id=info:pmid/&rfr_iscdi=true |