Large eddy simulation of a thermal impinging jet using the lattice Boltzmann method

A compressible Hybrid Lattice Boltzmann Method solver is used to perform a wall-resolved Large eddy simulation of an isothermal axisymmetric jet issuing from a pipe and impinging on a heated flat plate at a Reynolds number of 23 000, a Mach number of 0.1, and an impingement distance of two jet diame...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2022-05, Vol.34 (5)
Hauptverfasser: Nguyen, M., Boussuge, J. F., Sagaut, P., Larroya-Huguet, J. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Physics of fluids (1994)
container_volume 34
creator Nguyen, M.
Boussuge, J. F.
Sagaut, P.
Larroya-Huguet, J. C.
description A compressible Hybrid Lattice Boltzmann Method solver is used to perform a wall-resolved Large eddy simulation of an isothermal axisymmetric jet issuing from a pipe and impinging on a heated flat plate at a Reynolds number of 23 000, a Mach number of 0.1, and an impingement distance of two jet diameters. The jet flow field statistics, Nusselt number profile (including the secondary peak), and shear stress profile were well reproduced. The azimuthal coherence of the primary vortical structures was relatively low, leading to no discernible temporal periodicity of the azimuthally averaged Nusselt number at the location of the secondary peak. While local unsteady near-wall flow separation was observed in the wall jet, this flow separation did not exhibit azimuthal coherence and was not found to be the only cause of the thermal spots blue, which lead to the secondary peak in the Nusselt number, as stream-wise oriented structures also played a significant role in increasing the local heat transfer.
doi_str_mv 10.1063/5.0088410
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0088410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2663714756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2760-b8ac25c16507e9ab87c44c2bd0b10c9cb0241d3a66a5913ca8a7dc0cc5a47be13</originalsourceid><addsrcrecordid>eNp9kN9LwzAQx4MoOKcP_gcBnxQ6L_2RtI9zqBMKPqjP4ZpmW0bbzCQV5l9v60TfhIM77j58OT6EXDKYMeDJbTYDyPOUwRGZMMiLSHDOj8dZQMR5wk7JmfdbAEiKmE_IS4luramu6z31pu0bDMZ21K4o0rDRrsWGmnZnuvVQdKsD7f04DTc6sMEoTe9sEz5b7Dra6rCx9Tk5WWHj9cVPn5K3h_vXxTIqnx-fFvMyUrHgEFU5qjhTjGcgdIFVLlSaqriqoWKgClVBnLI6Qc4xK1iiMEdRK1Aqw1RUmiVTcn3I3WAjd8606PbSopHLeSnHHSScFwWwj5G9OrA7Z9977YPc2t51w3syHrQIloqM_yUqZ713evUby0COfmUmf_wO7M2B9cqEb2v_wF-_bnkP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663714756</pqid></control><display><type>article</type><title>Large eddy simulation of a thermal impinging jet using the lattice Boltzmann method</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Nguyen, M. ; Boussuge, J. F. ; Sagaut, P. ; Larroya-Huguet, J. C.</creator><creatorcontrib>Nguyen, M. ; Boussuge, J. F. ; Sagaut, P. ; Larroya-Huguet, J. C.</creatorcontrib><description>A compressible Hybrid Lattice Boltzmann Method solver is used to perform a wall-resolved Large eddy simulation of an isothermal axisymmetric jet issuing from a pipe and impinging on a heated flat plate at a Reynolds number of 23 000, a Mach number of 0.1, and an impingement distance of two jet diameters. The jet flow field statistics, Nusselt number profile (including the secondary peak), and shear stress profile were well reproduced. The azimuthal coherence of the primary vortical structures was relatively low, leading to no discernible temporal periodicity of the azimuthally averaged Nusselt number at the location of the secondary peak. While local unsteady near-wall flow separation was observed in the wall jet, this flow separation did not exhibit azimuthal coherence and was not found to be the only cause of the thermal spots blue, which lead to the secondary peak in the Nusselt number, as stream-wise oriented structures also played a significant role in increasing the local heat transfer.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0088410</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Coherence ; Compressibility ; Flat plates ; Flow separation ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Jet flow ; Jet impingement ; Large eddy simulation ; Mach number ; Mechanics ; Nusselt number ; Physics ; Reynolds number ; Separation ; Shear stress ; Vortices ; Wall flow ; Wall jets</subject><ispartof>Physics of fluids (1994), 2022-05, Vol.34 (5)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2760-b8ac25c16507e9ab87c44c2bd0b10c9cb0241d3a66a5913ca8a7dc0cc5a47be13</citedby><cites>FETCH-LOGICAL-c2760-b8ac25c16507e9ab87c44c2bd0b10c9cb0241d3a66a5913ca8a7dc0cc5a47be13</cites><orcidid>0000-0002-6338-6954 ; 0000-0001-5349-0582 ; 0000-0002-3785-120X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,794,885,4512,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03669901$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, M.</creatorcontrib><creatorcontrib>Boussuge, J. F.</creatorcontrib><creatorcontrib>Sagaut, P.</creatorcontrib><creatorcontrib>Larroya-Huguet, J. C.</creatorcontrib><title>Large eddy simulation of a thermal impinging jet using the lattice Boltzmann method</title><title>Physics of fluids (1994)</title><description>A compressible Hybrid Lattice Boltzmann Method solver is used to perform a wall-resolved Large eddy simulation of an isothermal axisymmetric jet issuing from a pipe and impinging on a heated flat plate at a Reynolds number of 23 000, a Mach number of 0.1, and an impingement distance of two jet diameters. The jet flow field statistics, Nusselt number profile (including the secondary peak), and shear stress profile were well reproduced. The azimuthal coherence of the primary vortical structures was relatively low, leading to no discernible temporal periodicity of the azimuthally averaged Nusselt number at the location of the secondary peak. While local unsteady near-wall flow separation was observed in the wall jet, this flow separation did not exhibit azimuthal coherence and was not found to be the only cause of the thermal spots blue, which lead to the secondary peak in the Nusselt number, as stream-wise oriented structures also played a significant role in increasing the local heat transfer.</description><subject>Coherence</subject><subject>Compressibility</subject><subject>Flat plates</subject><subject>Flow separation</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Jet flow</subject><subject>Jet impingement</subject><subject>Large eddy simulation</subject><subject>Mach number</subject><subject>Mechanics</subject><subject>Nusselt number</subject><subject>Physics</subject><subject>Reynolds number</subject><subject>Separation</subject><subject>Shear stress</subject><subject>Vortices</subject><subject>Wall flow</subject><subject>Wall jets</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kN9LwzAQx4MoOKcP_gcBnxQ6L_2RtI9zqBMKPqjP4ZpmW0bbzCQV5l9v60TfhIM77j58OT6EXDKYMeDJbTYDyPOUwRGZMMiLSHDOj8dZQMR5wk7JmfdbAEiKmE_IS4luramu6z31pu0bDMZ21K4o0rDRrsWGmnZnuvVQdKsD7f04DTc6sMEoTe9sEz5b7Dra6rCx9Tk5WWHj9cVPn5K3h_vXxTIqnx-fFvMyUrHgEFU5qjhTjGcgdIFVLlSaqriqoWKgClVBnLI6Qc4xK1iiMEdRK1Aqw1RUmiVTcn3I3WAjd8606PbSopHLeSnHHSScFwWwj5G9OrA7Z9977YPc2t51w3syHrQIloqM_yUqZ713evUby0COfmUmf_wO7M2B9cqEb2v_wF-_bnkP</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Nguyen, M.</creator><creator>Boussuge, J. F.</creator><creator>Sagaut, P.</creator><creator>Larroya-Huguet, J. C.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6338-6954</orcidid><orcidid>https://orcid.org/0000-0001-5349-0582</orcidid><orcidid>https://orcid.org/0000-0002-3785-120X</orcidid></search><sort><creationdate>202205</creationdate><title>Large eddy simulation of a thermal impinging jet using the lattice Boltzmann method</title><author>Nguyen, M. ; Boussuge, J. F. ; Sagaut, P. ; Larroya-Huguet, J. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2760-b8ac25c16507e9ab87c44c2bd0b10c9cb0241d3a66a5913ca8a7dc0cc5a47be13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coherence</topic><topic>Compressibility</topic><topic>Flat plates</topic><topic>Flow separation</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Jet flow</topic><topic>Jet impingement</topic><topic>Large eddy simulation</topic><topic>Mach number</topic><topic>Mechanics</topic><topic>Nusselt number</topic><topic>Physics</topic><topic>Reynolds number</topic><topic>Separation</topic><topic>Shear stress</topic><topic>Vortices</topic><topic>Wall flow</topic><topic>Wall jets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, M.</creatorcontrib><creatorcontrib>Boussuge, J. F.</creatorcontrib><creatorcontrib>Sagaut, P.</creatorcontrib><creatorcontrib>Larroya-Huguet, J. C.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, M.</au><au>Boussuge, J. F.</au><au>Sagaut, P.</au><au>Larroya-Huguet, J. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large eddy simulation of a thermal impinging jet using the lattice Boltzmann method</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2022-05</date><risdate>2022</risdate><volume>34</volume><issue>5</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>A compressible Hybrid Lattice Boltzmann Method solver is used to perform a wall-resolved Large eddy simulation of an isothermal axisymmetric jet issuing from a pipe and impinging on a heated flat plate at a Reynolds number of 23 000, a Mach number of 0.1, and an impingement distance of two jet diameters. The jet flow field statistics, Nusselt number profile (including the secondary peak), and shear stress profile were well reproduced. The azimuthal coherence of the primary vortical structures was relatively low, leading to no discernible temporal periodicity of the azimuthally averaged Nusselt number at the location of the secondary peak. While local unsteady near-wall flow separation was observed in the wall jet, this flow separation did not exhibit azimuthal coherence and was not found to be the only cause of the thermal spots blue, which lead to the secondary peak in the Nusselt number, as stream-wise oriented structures also played a significant role in increasing the local heat transfer.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0088410</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-6338-6954</orcidid><orcidid>https://orcid.org/0000-0001-5349-0582</orcidid><orcidid>https://orcid.org/0000-0002-3785-120X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2022-05, Vol.34 (5)
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_5_0088410
source AIP Journals Complete; Alma/SFX Local Collection
subjects Coherence
Compressibility
Flat plates
Flow separation
Fluid dynamics
Fluid flow
Fluid mechanics
Jet flow
Jet impingement
Large eddy simulation
Mach number
Mechanics
Nusselt number
Physics
Reynolds number
Separation
Shear stress
Vortices
Wall flow
Wall jets
title Large eddy simulation of a thermal impinging jet using the lattice Boltzmann method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A04%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20eddy%20simulation%20of%20a%20thermal%20impinging%20jet%20using%20the%20lattice%20Boltzmann%20method&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Nguyen,%20M.&rft.date=2022-05&rft.volume=34&rft.issue=5&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0088410&rft_dat=%3Cproquest_scita%3E2663714756%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663714756&rft_id=info:pmid/&rfr_iscdi=true