Deformation and acceleration of water droplet in continuous airflow

The present work investigates the deformation and acceleration of water droplets in continuous airflow. The numerical approach is based on the level set method for capturing the liquid–gas interface and the projection method for solving the three-dimensional incompressible Navier–Stokes equations. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2022-03, Vol.34 (3)
Hauptverfasser: Li, Wen, Wang, Jingxin, Zhu, Chuling, Tian, Linlin, Zhao, Ning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Physics of fluids (1994)
container_volume 34
creator Li, Wen
Wang, Jingxin
Zhu, Chuling
Tian, Linlin
Zhao, Ning
description The present work investigates the deformation and acceleration of water droplets in continuous airflow. The numerical approach is based on the level set method for capturing the liquid–gas interface and the projection method for solving the three-dimensional incompressible Navier–Stokes equations. The effects of the incoming airflow velocity (10–100 m/s), initial droplet diameter (20–100  μm), and supercooling on water droplet deformation are investigated. The results indicate that the droplet enters the breakup regime at a critical Weber number of 10, which agrees with the published literature. A dimensionless deformation factor L is defined to describe the droplet deformation. The results confirm that the extreme values of L increase with increasing Weber number during droplet movement. Two models are proposed to predict the minimum deformation factor and the corresponding dimensionless time. The effect of supercooling on water droplet deformation is analyzed, and it is found that the deformation factor of supercooled droplets is lower than that of room-temperature droplets, while supercooled water droplets exhibit greater acceleration. Furthermore, based on the numerical results, a model governed by the Weber number and the Ohnesorge number is proposed for predicting droplet acceleration.
doi_str_mv 10.1063/5.0085210
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0085210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2639829617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-5f24fe7c7f8f885ce5a42184c64e0cbd7617f46e1425fcd321aea3e02a8863c33</originalsourceid><addsrcrecordid>eNqd0EtLxDAQB_AgCq6rB79BwJNC1zyaR49Sn7DgRc8hphPo0m1qkrr47e3aBe-eZhh-zDB_hC4pWVEi-a1YEaIFo-QILSjRVaGklMf7XpFCSk5P0VlKG0IIr5hcoPoefIhbm9vQY9s32DoHHcR5EDze2QwRNzEMHWTc9tiFPrf9GMaEbRt9F3bn6MTbLsHFoS7R--PDW_1crF-fXuq7deE4U7kQnpUelFNee62FA2FLRnXpZAnEfTRKUuVLCbRkwruGM2rBciDMai2543yJrua9QwyfI6RsNmGM_XTSMMkrzappw6SuZ-ViSCmCN0NstzZ-G0rMPiMjzCGjyd7MNrk2_778P_wV4h80Q-P5D-IbdLI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639829617</pqid></control><display><type>article</type><title>Deformation and acceleration of water droplet in continuous airflow</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Li, Wen ; Wang, Jingxin ; Zhu, Chuling ; Tian, Linlin ; Zhao, Ning</creator><creatorcontrib>Li, Wen ; Wang, Jingxin ; Zhu, Chuling ; Tian, Linlin ; Zhao, Ning</creatorcontrib><description>The present work investigates the deformation and acceleration of water droplets in continuous airflow. The numerical approach is based on the level set method for capturing the liquid–gas interface and the projection method for solving the three-dimensional incompressible Navier–Stokes equations. The effects of the incoming airflow velocity (10–100 m/s), initial droplet diameter (20–100  μm), and supercooling on water droplet deformation are investigated. The results indicate that the droplet enters the breakup regime at a critical Weber number of 10, which agrees with the published literature. A dimensionless deformation factor L is defined to describe the droplet deformation. The results confirm that the extreme values of L increase with increasing Weber number during droplet movement. Two models are proposed to predict the minimum deformation factor and the corresponding dimensionless time. The effect of supercooling on water droplet deformation is analyzed, and it is found that the deformation factor of supercooled droplets is lower than that of room-temperature droplets, while supercooled water droplets exhibit greater acceleration. Furthermore, based on the numerical results, a model governed by the Weber number and the Ohnesorge number is proposed for predicting droplet acceleration.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0085210</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Acceleration ; Air flow ; Deformation analysis ; Deformation effects ; Diameters ; Droplets ; Extreme values ; Fluid dynamics ; Forecasting ; Mathematical models ; Physics ; Room temperature ; Supercooling ; Water drops ; Weber number</subject><ispartof>Physics of fluids (1994), 2022-03, Vol.34 (3)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-5f24fe7c7f8f885ce5a42184c64e0cbd7617f46e1425fcd321aea3e02a8863c33</citedby><cites>FETCH-LOGICAL-c327t-5f24fe7c7f8f885ce5a42184c64e0cbd7617f46e1425fcd321aea3e02a8863c33</cites><orcidid>0000-0002-2802-2581 ; 0000-0002-8639-6813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Wen</creatorcontrib><creatorcontrib>Wang, Jingxin</creatorcontrib><creatorcontrib>Zhu, Chuling</creatorcontrib><creatorcontrib>Tian, Linlin</creatorcontrib><creatorcontrib>Zhao, Ning</creatorcontrib><title>Deformation and acceleration of water droplet in continuous airflow</title><title>Physics of fluids (1994)</title><description>The present work investigates the deformation and acceleration of water droplets in continuous airflow. The numerical approach is based on the level set method for capturing the liquid–gas interface and the projection method for solving the three-dimensional incompressible Navier–Stokes equations. The effects of the incoming airflow velocity (10–100 m/s), initial droplet diameter (20–100  μm), and supercooling on water droplet deformation are investigated. The results indicate that the droplet enters the breakup regime at a critical Weber number of 10, which agrees with the published literature. A dimensionless deformation factor L is defined to describe the droplet deformation. The results confirm that the extreme values of L increase with increasing Weber number during droplet movement. Two models are proposed to predict the minimum deformation factor and the corresponding dimensionless time. The effect of supercooling on water droplet deformation is analyzed, and it is found that the deformation factor of supercooled droplets is lower than that of room-temperature droplets, while supercooled water droplets exhibit greater acceleration. Furthermore, based on the numerical results, a model governed by the Weber number and the Ohnesorge number is proposed for predicting droplet acceleration.</description><subject>Acceleration</subject><subject>Air flow</subject><subject>Deformation analysis</subject><subject>Deformation effects</subject><subject>Diameters</subject><subject>Droplets</subject><subject>Extreme values</subject><subject>Fluid dynamics</subject><subject>Forecasting</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Room temperature</subject><subject>Supercooling</subject><subject>Water drops</subject><subject>Weber number</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqd0EtLxDAQB_AgCq6rB79BwJNC1zyaR49Sn7DgRc8hphPo0m1qkrr47e3aBe-eZhh-zDB_hC4pWVEi-a1YEaIFo-QILSjRVaGklMf7XpFCSk5P0VlKG0IIr5hcoPoefIhbm9vQY9s32DoHHcR5EDze2QwRNzEMHWTc9tiFPrf9GMaEbRt9F3bn6MTbLsHFoS7R--PDW_1crF-fXuq7deE4U7kQnpUelFNee62FA2FLRnXpZAnEfTRKUuVLCbRkwruGM2rBciDMai2543yJrua9QwyfI6RsNmGM_XTSMMkrzappw6SuZ-ViSCmCN0NstzZ-G0rMPiMjzCGjyd7MNrk2_778P_wV4h80Q-P5D-IbdLI</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Li, Wen</creator><creator>Wang, Jingxin</creator><creator>Zhu, Chuling</creator><creator>Tian, Linlin</creator><creator>Zhao, Ning</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2802-2581</orcidid><orcidid>https://orcid.org/0000-0002-8639-6813</orcidid></search><sort><creationdate>202203</creationdate><title>Deformation and acceleration of water droplet in continuous airflow</title><author>Li, Wen ; Wang, Jingxin ; Zhu, Chuling ; Tian, Linlin ; Zhao, Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-5f24fe7c7f8f885ce5a42184c64e0cbd7617f46e1425fcd321aea3e02a8863c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acceleration</topic><topic>Air flow</topic><topic>Deformation analysis</topic><topic>Deformation effects</topic><topic>Diameters</topic><topic>Droplets</topic><topic>Extreme values</topic><topic>Fluid dynamics</topic><topic>Forecasting</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Room temperature</topic><topic>Supercooling</topic><topic>Water drops</topic><topic>Weber number</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wen</creatorcontrib><creatorcontrib>Wang, Jingxin</creatorcontrib><creatorcontrib>Zhu, Chuling</creatorcontrib><creatorcontrib>Tian, Linlin</creatorcontrib><creatorcontrib>Zhao, Ning</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wen</au><au>Wang, Jingxin</au><au>Zhu, Chuling</au><au>Tian, Linlin</au><au>Zhao, Ning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deformation and acceleration of water droplet in continuous airflow</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2022-03</date><risdate>2022</risdate><volume>34</volume><issue>3</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The present work investigates the deformation and acceleration of water droplets in continuous airflow. The numerical approach is based on the level set method for capturing the liquid–gas interface and the projection method for solving the three-dimensional incompressible Navier–Stokes equations. The effects of the incoming airflow velocity (10–100 m/s), initial droplet diameter (20–100  μm), and supercooling on water droplet deformation are investigated. The results indicate that the droplet enters the breakup regime at a critical Weber number of 10, which agrees with the published literature. A dimensionless deformation factor L is defined to describe the droplet deformation. The results confirm that the extreme values of L increase with increasing Weber number during droplet movement. Two models are proposed to predict the minimum deformation factor and the corresponding dimensionless time. The effect of supercooling on water droplet deformation is analyzed, and it is found that the deformation factor of supercooled droplets is lower than that of room-temperature droplets, while supercooled water droplets exhibit greater acceleration. Furthermore, based on the numerical results, a model governed by the Weber number and the Ohnesorge number is proposed for predicting droplet acceleration.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0085210</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2802-2581</orcidid><orcidid>https://orcid.org/0000-0002-8639-6813</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2022-03, Vol.34 (3)
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_5_0085210
source AIP Journals Complete; Alma/SFX Local Collection
subjects Acceleration
Air flow
Deformation analysis
Deformation effects
Diameters
Droplets
Extreme values
Fluid dynamics
Forecasting
Mathematical models
Physics
Room temperature
Supercooling
Water drops
Weber number
title Deformation and acceleration of water droplet in continuous airflow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A52%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deformation%20and%20acceleration%20of%20water%20droplet%20in%20continuous%20airflow&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Li,%20Wen&rft.date=2022-03&rft.volume=34&rft.issue=3&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0085210&rft_dat=%3Cproquest_scita%3E2639829617%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639829617&rft_id=info:pmid/&rfr_iscdi=true