Deformation and acceleration of water droplet in continuous airflow
The present work investigates the deformation and acceleration of water droplets in continuous airflow. The numerical approach is based on the level set method for capturing the liquid–gas interface and the projection method for solving the three-dimensional incompressible Navier–Stokes equations. T...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2022-03, Vol.34 (3) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 34 |
creator | Li, Wen Wang, Jingxin Zhu, Chuling Tian, Linlin Zhao, Ning |
description | The present work investigates the deformation and acceleration of water droplets in continuous airflow. The numerical approach is based on the level set method for capturing the liquid–gas interface and the projection method for solving the three-dimensional incompressible Navier–Stokes equations. The effects of the incoming airflow velocity (10–100 m/s), initial droplet diameter (20–100
μm), and supercooling on water droplet deformation are investigated. The results indicate that the droplet enters the breakup regime at a critical Weber number of 10, which agrees with the published literature. A dimensionless deformation factor L is defined to describe the droplet deformation. The results confirm that the extreme values of L increase with increasing Weber number during droplet movement. Two models are proposed to predict the minimum deformation factor and the corresponding dimensionless time. The effect of supercooling on water droplet deformation is analyzed, and it is found that the deformation factor of supercooled droplets is lower than that of room-temperature droplets, while supercooled water droplets exhibit greater acceleration. Furthermore, based on the numerical results, a model governed by the Weber number and the Ohnesorge number is proposed for predicting droplet acceleration. |
doi_str_mv | 10.1063/5.0085210 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0085210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2639829617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-5f24fe7c7f8f885ce5a42184c64e0cbd7617f46e1425fcd321aea3e02a8863c33</originalsourceid><addsrcrecordid>eNqd0EtLxDAQB_AgCq6rB79BwJNC1zyaR49Sn7DgRc8hphPo0m1qkrr47e3aBe-eZhh-zDB_hC4pWVEi-a1YEaIFo-QILSjRVaGklMf7XpFCSk5P0VlKG0IIr5hcoPoefIhbm9vQY9s32DoHHcR5EDze2QwRNzEMHWTc9tiFPrf9GMaEbRt9F3bn6MTbLsHFoS7R--PDW_1crF-fXuq7deE4U7kQnpUelFNee62FA2FLRnXpZAnEfTRKUuVLCbRkwruGM2rBciDMai2543yJrua9QwyfI6RsNmGM_XTSMMkrzappw6SuZ-ViSCmCN0NstzZ-G0rMPiMjzCGjyd7MNrk2_778P_wV4h80Q-P5D-IbdLI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639829617</pqid></control><display><type>article</type><title>Deformation and acceleration of water droplet in continuous airflow</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Li, Wen ; Wang, Jingxin ; Zhu, Chuling ; Tian, Linlin ; Zhao, Ning</creator><creatorcontrib>Li, Wen ; Wang, Jingxin ; Zhu, Chuling ; Tian, Linlin ; Zhao, Ning</creatorcontrib><description>The present work investigates the deformation and acceleration of water droplets in continuous airflow. The numerical approach is based on the level set method for capturing the liquid–gas interface and the projection method for solving the three-dimensional incompressible Navier–Stokes equations. The effects of the incoming airflow velocity (10–100 m/s), initial droplet diameter (20–100
μm), and supercooling on water droplet deformation are investigated. The results indicate that the droplet enters the breakup regime at a critical Weber number of 10, which agrees with the published literature. A dimensionless deformation factor L is defined to describe the droplet deformation. The results confirm that the extreme values of L increase with increasing Weber number during droplet movement. Two models are proposed to predict the minimum deformation factor and the corresponding dimensionless time. The effect of supercooling on water droplet deformation is analyzed, and it is found that the deformation factor of supercooled droplets is lower than that of room-temperature droplets, while supercooled water droplets exhibit greater acceleration. Furthermore, based on the numerical results, a model governed by the Weber number and the Ohnesorge number is proposed for predicting droplet acceleration.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0085210</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Acceleration ; Air flow ; Deformation analysis ; Deformation effects ; Diameters ; Droplets ; Extreme values ; Fluid dynamics ; Forecasting ; Mathematical models ; Physics ; Room temperature ; Supercooling ; Water drops ; Weber number</subject><ispartof>Physics of fluids (1994), 2022-03, Vol.34 (3)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-5f24fe7c7f8f885ce5a42184c64e0cbd7617f46e1425fcd321aea3e02a8863c33</citedby><cites>FETCH-LOGICAL-c327t-5f24fe7c7f8f885ce5a42184c64e0cbd7617f46e1425fcd321aea3e02a8863c33</cites><orcidid>0000-0002-2802-2581 ; 0000-0002-8639-6813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Wen</creatorcontrib><creatorcontrib>Wang, Jingxin</creatorcontrib><creatorcontrib>Zhu, Chuling</creatorcontrib><creatorcontrib>Tian, Linlin</creatorcontrib><creatorcontrib>Zhao, Ning</creatorcontrib><title>Deformation and acceleration of water droplet in continuous airflow</title><title>Physics of fluids (1994)</title><description>The present work investigates the deformation and acceleration of water droplets in continuous airflow. The numerical approach is based on the level set method for capturing the liquid–gas interface and the projection method for solving the three-dimensional incompressible Navier–Stokes equations. The effects of the incoming airflow velocity (10–100 m/s), initial droplet diameter (20–100
μm), and supercooling on water droplet deformation are investigated. The results indicate that the droplet enters the breakup regime at a critical Weber number of 10, which agrees with the published literature. A dimensionless deformation factor L is defined to describe the droplet deformation. The results confirm that the extreme values of L increase with increasing Weber number during droplet movement. Two models are proposed to predict the minimum deformation factor and the corresponding dimensionless time. The effect of supercooling on water droplet deformation is analyzed, and it is found that the deformation factor of supercooled droplets is lower than that of room-temperature droplets, while supercooled water droplets exhibit greater acceleration. Furthermore, based on the numerical results, a model governed by the Weber number and the Ohnesorge number is proposed for predicting droplet acceleration.</description><subject>Acceleration</subject><subject>Air flow</subject><subject>Deformation analysis</subject><subject>Deformation effects</subject><subject>Diameters</subject><subject>Droplets</subject><subject>Extreme values</subject><subject>Fluid dynamics</subject><subject>Forecasting</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Room temperature</subject><subject>Supercooling</subject><subject>Water drops</subject><subject>Weber number</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqd0EtLxDAQB_AgCq6rB79BwJNC1zyaR49Sn7DgRc8hphPo0m1qkrr47e3aBe-eZhh-zDB_hC4pWVEi-a1YEaIFo-QILSjRVaGklMf7XpFCSk5P0VlKG0IIr5hcoPoefIhbm9vQY9s32DoHHcR5EDze2QwRNzEMHWTc9tiFPrf9GMaEbRt9F3bn6MTbLsHFoS7R--PDW_1crF-fXuq7deE4U7kQnpUelFNee62FA2FLRnXpZAnEfTRKUuVLCbRkwruGM2rBciDMai2543yJrua9QwyfI6RsNmGM_XTSMMkrzappw6SuZ-ViSCmCN0NstzZ-G0rMPiMjzCGjyd7MNrk2_778P_wV4h80Q-P5D-IbdLI</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Li, Wen</creator><creator>Wang, Jingxin</creator><creator>Zhu, Chuling</creator><creator>Tian, Linlin</creator><creator>Zhao, Ning</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2802-2581</orcidid><orcidid>https://orcid.org/0000-0002-8639-6813</orcidid></search><sort><creationdate>202203</creationdate><title>Deformation and acceleration of water droplet in continuous airflow</title><author>Li, Wen ; Wang, Jingxin ; Zhu, Chuling ; Tian, Linlin ; Zhao, Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-5f24fe7c7f8f885ce5a42184c64e0cbd7617f46e1425fcd321aea3e02a8863c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acceleration</topic><topic>Air flow</topic><topic>Deformation analysis</topic><topic>Deformation effects</topic><topic>Diameters</topic><topic>Droplets</topic><topic>Extreme values</topic><topic>Fluid dynamics</topic><topic>Forecasting</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Room temperature</topic><topic>Supercooling</topic><topic>Water drops</topic><topic>Weber number</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wen</creatorcontrib><creatorcontrib>Wang, Jingxin</creatorcontrib><creatorcontrib>Zhu, Chuling</creatorcontrib><creatorcontrib>Tian, Linlin</creatorcontrib><creatorcontrib>Zhao, Ning</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wen</au><au>Wang, Jingxin</au><au>Zhu, Chuling</au><au>Tian, Linlin</au><au>Zhao, Ning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deformation and acceleration of water droplet in continuous airflow</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2022-03</date><risdate>2022</risdate><volume>34</volume><issue>3</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The present work investigates the deformation and acceleration of water droplets in continuous airflow. The numerical approach is based on the level set method for capturing the liquid–gas interface and the projection method for solving the three-dimensional incompressible Navier–Stokes equations. The effects of the incoming airflow velocity (10–100 m/s), initial droplet diameter (20–100
μm), and supercooling on water droplet deformation are investigated. The results indicate that the droplet enters the breakup regime at a critical Weber number of 10, which agrees with the published literature. A dimensionless deformation factor L is defined to describe the droplet deformation. The results confirm that the extreme values of L increase with increasing Weber number during droplet movement. Two models are proposed to predict the minimum deformation factor and the corresponding dimensionless time. The effect of supercooling on water droplet deformation is analyzed, and it is found that the deformation factor of supercooled droplets is lower than that of room-temperature droplets, while supercooled water droplets exhibit greater acceleration. Furthermore, based on the numerical results, a model governed by the Weber number and the Ohnesorge number is proposed for predicting droplet acceleration.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0085210</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2802-2581</orcidid><orcidid>https://orcid.org/0000-0002-8639-6813</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2022-03, Vol.34 (3) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0085210 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Acceleration Air flow Deformation analysis Deformation effects Diameters Droplets Extreme values Fluid dynamics Forecasting Mathematical models Physics Room temperature Supercooling Water drops Weber number |
title | Deformation and acceleration of water droplet in continuous airflow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A52%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deformation%20and%20acceleration%20of%20water%20droplet%20in%20continuous%20airflow&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Li,%20Wen&rft.date=2022-03&rft.volume=34&rft.issue=3&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0085210&rft_dat=%3Cproquest_scita%3E2639829617%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639829617&rft_id=info:pmid/&rfr_iscdi=true |