Structure of octonionic Hilbert spaces with applications in the Parseval equality and Cayley–Dickson algebras

Contrary to the simple structure of the tensor product of the quaternionic Hilbert space, the octonionic situation becomes more involved. It turns out that an octonionic Hilbert space can be decomposed as an orthogonal direct sum of two subspaces, each of them isomorphic to a tensor product of an ir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2022-04, Vol.63 (4)
Hauptverfasser: Huo, Qinghai, Ren, Guangbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Journal of mathematical physics
container_volume 63
creator Huo, Qinghai
Ren, Guangbin
description Contrary to the simple structure of the tensor product of the quaternionic Hilbert space, the octonionic situation becomes more involved. It turns out that an octonionic Hilbert space can be decomposed as an orthogonal direct sum of two subspaces, each of them isomorphic to a tensor product of an irreducible octonionic Hilbert space with a real Hilbert space. As an application, we find that for a given orthogonal basis, the octonionic Parseval equality holds if and only if the basis is weak associative. Fortunately, there always exists a weak associative orthogonal basis in an octonionic Hilbert space. This completely removes the obstacles caused by the failure of the octonionic Parseval equality.
doi_str_mv 10.1063/5.0085132
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0085132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2646814468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-3564c7b950be040f5f53fd180ed48f85b90c855ff7ba275c32c0458f4e755b433</originalsourceid><addsrcrecordid>eNp90M9KAzEQBvAgCtbqwTcIeFLYOskmu-lR6p8KBQX1vGTTxKbGzZpklb35Dr6hT-JqexaGmcuPb-BD6JjAhECRn_MJgOAkpztoREBMs7LgYheNACjNKBNiHx3EuAYgRDA2Qv4hhU6lLmjsDfYq-cYOo_DculqHhGMrlY74w6YVlm3rrJJpEBHbBqeVxvcyRP0uHdZvnXQ29Vg2SzyTvdP99-fXpVUv0TdYumddBxkP0Z6RLuqj7R2jp-urx9k8W9zd3M4uFpmilKYs5wVTZT3lUGtgYLjhuVkSAXrJhBG8noISnBtT1pKWXOVUAePCMF1yXrM8H6OTTW4b_FunY6rWvgvN8LKiBSsEYcMa1OlGqeBjDNpUbbCvMvQVgeq3z4pX2z4He7axUdn018E_-AfBkXbB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646814468</pqid></control><display><type>article</type><title>Structure of octonionic Hilbert spaces with applications in the Parseval equality and Cayley–Dickson algebras</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Huo, Qinghai ; Ren, Guangbin</creator><creatorcontrib>Huo, Qinghai ; Ren, Guangbin</creatorcontrib><description>Contrary to the simple structure of the tensor product of the quaternionic Hilbert space, the octonionic situation becomes more involved. It turns out that an octonionic Hilbert space can be decomposed as an orthogonal direct sum of two subspaces, each of them isomorphic to a tensor product of an irreducible octonionic Hilbert space with a real Hilbert space. As an application, we find that for a given orthogonal basis, the octonionic Parseval equality holds if and only if the basis is weak associative. Fortunately, there always exists a weak associative orthogonal basis in an octonionic Hilbert space. This completely removes the obstacles caused by the failure of the octonionic Parseval equality.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0085132</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Equality ; Hilbert space ; Mathematical analysis ; Physics ; Subspaces ; Tensors</subject><ispartof>Journal of mathematical physics, 2022-04, Vol.63 (4)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-3564c7b950be040f5f53fd180ed48f85b90c855ff7ba275c32c0458f4e755b433</citedby><cites>FETCH-LOGICAL-c222t-3564c7b950be040f5f53fd180ed48f85b90c855ff7ba275c32c0458f4e755b433</cites><orcidid>0000-0003-2067-681X ; 0000-0003-2490-4234</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0085132$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Huo, Qinghai</creatorcontrib><creatorcontrib>Ren, Guangbin</creatorcontrib><title>Structure of octonionic Hilbert spaces with applications in the Parseval equality and Cayley–Dickson algebras</title><title>Journal of mathematical physics</title><description>Contrary to the simple structure of the tensor product of the quaternionic Hilbert space, the octonionic situation becomes more involved. It turns out that an octonionic Hilbert space can be decomposed as an orthogonal direct sum of two subspaces, each of them isomorphic to a tensor product of an irreducible octonionic Hilbert space with a real Hilbert space. As an application, we find that for a given orthogonal basis, the octonionic Parseval equality holds if and only if the basis is weak associative. Fortunately, there always exists a weak associative orthogonal basis in an octonionic Hilbert space. This completely removes the obstacles caused by the failure of the octonionic Parseval equality.</description><subject>Equality</subject><subject>Hilbert space</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Subspaces</subject><subject>Tensors</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90M9KAzEQBvAgCtbqwTcIeFLYOskmu-lR6p8KBQX1vGTTxKbGzZpklb35Dr6hT-JqexaGmcuPb-BD6JjAhECRn_MJgOAkpztoREBMs7LgYheNACjNKBNiHx3EuAYgRDA2Qv4hhU6lLmjsDfYq-cYOo_DculqHhGMrlY74w6YVlm3rrJJpEBHbBqeVxvcyRP0uHdZvnXQ29Vg2SzyTvdP99-fXpVUv0TdYumddBxkP0Z6RLuqj7R2jp-urx9k8W9zd3M4uFpmilKYs5wVTZT3lUGtgYLjhuVkSAXrJhBG8noISnBtT1pKWXOVUAePCMF1yXrM8H6OTTW4b_FunY6rWvgvN8LKiBSsEYcMa1OlGqeBjDNpUbbCvMvQVgeq3z4pX2z4He7axUdn018E_-AfBkXbB</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Huo, Qinghai</creator><creator>Ren, Guangbin</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2067-681X</orcidid><orcidid>https://orcid.org/0000-0003-2490-4234</orcidid></search><sort><creationdate>20220401</creationdate><title>Structure of octonionic Hilbert spaces with applications in the Parseval equality and Cayley–Dickson algebras</title><author>Huo, Qinghai ; Ren, Guangbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-3564c7b950be040f5f53fd180ed48f85b90c855ff7ba275c32c0458f4e755b433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Equality</topic><topic>Hilbert space</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Subspaces</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huo, Qinghai</creatorcontrib><creatorcontrib>Ren, Guangbin</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huo, Qinghai</au><au>Ren, Guangbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of octonionic Hilbert spaces with applications in the Parseval equality and Cayley–Dickson algebras</atitle><jtitle>Journal of mathematical physics</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>63</volume><issue>4</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>Contrary to the simple structure of the tensor product of the quaternionic Hilbert space, the octonionic situation becomes more involved. It turns out that an octonionic Hilbert space can be decomposed as an orthogonal direct sum of two subspaces, each of them isomorphic to a tensor product of an irreducible octonionic Hilbert space with a real Hilbert space. As an application, we find that for a given orthogonal basis, the octonionic Parseval equality holds if and only if the basis is weak associative. Fortunately, there always exists a weak associative orthogonal basis in an octonionic Hilbert space. This completely removes the obstacles caused by the failure of the octonionic Parseval equality.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0085132</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-2067-681X</orcidid><orcidid>https://orcid.org/0000-0003-2490-4234</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2022-04, Vol.63 (4)
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_5_0085132
source AIP Journals Complete; Alma/SFX Local Collection
subjects Equality
Hilbert space
Mathematical analysis
Physics
Subspaces
Tensors
title Structure of octonionic Hilbert spaces with applications in the Parseval equality and Cayley–Dickson algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A25%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20octonionic%20Hilbert%20spaces%20with%20applications%20in%20the%20Parseval%20equality%20and%20Cayley%E2%80%93Dickson%20algebras&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Huo,%20Qinghai&rft.date=2022-04-01&rft.volume=63&rft.issue=4&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0085132&rft_dat=%3Cproquest_scita%3E2646814468%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646814468&rft_id=info:pmid/&rfr_iscdi=true