Structure of octonionic Hilbert spaces with applications in the Parseval equality and Cayley–Dickson algebras
Contrary to the simple structure of the tensor product of the quaternionic Hilbert space, the octonionic situation becomes more involved. It turns out that an octonionic Hilbert space can be decomposed as an orthogonal direct sum of two subspaces, each of them isomorphic to a tensor product of an ir...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2022-04, Vol.63 (4) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Journal of mathematical physics |
container_volume | 63 |
creator | Huo, Qinghai Ren, Guangbin |
description | Contrary to the simple structure of the tensor product of the quaternionic Hilbert space, the octonionic situation becomes more involved. It turns out that an octonionic Hilbert space can be decomposed as an orthogonal direct sum of two subspaces, each of them isomorphic to a tensor product of an irreducible octonionic Hilbert space with a real Hilbert space. As an application, we find that for a given orthogonal basis, the octonionic Parseval equality holds if and only if the basis is weak associative. Fortunately, there always exists a weak associative orthogonal basis in an octonionic Hilbert space. This completely removes the obstacles caused by the failure of the octonionic Parseval equality. |
doi_str_mv | 10.1063/5.0085132 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0085132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2646814468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-3564c7b950be040f5f53fd180ed48f85b90c855ff7ba275c32c0458f4e755b433</originalsourceid><addsrcrecordid>eNp90M9KAzEQBvAgCtbqwTcIeFLYOskmu-lR6p8KBQX1vGTTxKbGzZpklb35Dr6hT-JqexaGmcuPb-BD6JjAhECRn_MJgOAkpztoREBMs7LgYheNACjNKBNiHx3EuAYgRDA2Qv4hhU6lLmjsDfYq-cYOo_DculqHhGMrlY74w6YVlm3rrJJpEBHbBqeVxvcyRP0uHdZvnXQ29Vg2SzyTvdP99-fXpVUv0TdYumddBxkP0Z6RLuqj7R2jp-urx9k8W9zd3M4uFpmilKYs5wVTZT3lUGtgYLjhuVkSAXrJhBG8noISnBtT1pKWXOVUAePCMF1yXrM8H6OTTW4b_FunY6rWvgvN8LKiBSsEYcMa1OlGqeBjDNpUbbCvMvQVgeq3z4pX2z4He7axUdn018E_-AfBkXbB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646814468</pqid></control><display><type>article</type><title>Structure of octonionic Hilbert spaces with applications in the Parseval equality and Cayley–Dickson algebras</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Huo, Qinghai ; Ren, Guangbin</creator><creatorcontrib>Huo, Qinghai ; Ren, Guangbin</creatorcontrib><description>Contrary to the simple structure of the tensor product of the quaternionic Hilbert space, the octonionic situation becomes more involved. It turns out that an octonionic Hilbert space can be decomposed as an orthogonal direct sum of two subspaces, each of them isomorphic to a tensor product of an irreducible octonionic Hilbert space with a real Hilbert space. As an application, we find that for a given orthogonal basis, the octonionic Parseval equality holds if and only if the basis is weak associative. Fortunately, there always exists a weak associative orthogonal basis in an octonionic Hilbert space. This completely removes the obstacles caused by the failure of the octonionic Parseval equality.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0085132</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Equality ; Hilbert space ; Mathematical analysis ; Physics ; Subspaces ; Tensors</subject><ispartof>Journal of mathematical physics, 2022-04, Vol.63 (4)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-3564c7b950be040f5f53fd180ed48f85b90c855ff7ba275c32c0458f4e755b433</citedby><cites>FETCH-LOGICAL-c222t-3564c7b950be040f5f53fd180ed48f85b90c855ff7ba275c32c0458f4e755b433</cites><orcidid>0000-0003-2067-681X ; 0000-0003-2490-4234</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0085132$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Huo, Qinghai</creatorcontrib><creatorcontrib>Ren, Guangbin</creatorcontrib><title>Structure of octonionic Hilbert spaces with applications in the Parseval equality and Cayley–Dickson algebras</title><title>Journal of mathematical physics</title><description>Contrary to the simple structure of the tensor product of the quaternionic Hilbert space, the octonionic situation becomes more involved. It turns out that an octonionic Hilbert space can be decomposed as an orthogonal direct sum of two subspaces, each of them isomorphic to a tensor product of an irreducible octonionic Hilbert space with a real Hilbert space. As an application, we find that for a given orthogonal basis, the octonionic Parseval equality holds if and only if the basis is weak associative. Fortunately, there always exists a weak associative orthogonal basis in an octonionic Hilbert space. This completely removes the obstacles caused by the failure of the octonionic Parseval equality.</description><subject>Equality</subject><subject>Hilbert space</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Subspaces</subject><subject>Tensors</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90M9KAzEQBvAgCtbqwTcIeFLYOskmu-lR6p8KBQX1vGTTxKbGzZpklb35Dr6hT-JqexaGmcuPb-BD6JjAhECRn_MJgOAkpztoREBMs7LgYheNACjNKBNiHx3EuAYgRDA2Qv4hhU6lLmjsDfYq-cYOo_DculqHhGMrlY74w6YVlm3rrJJpEBHbBqeVxvcyRP0uHdZvnXQ29Vg2SzyTvdP99-fXpVUv0TdYumddBxkP0Z6RLuqj7R2jp-urx9k8W9zd3M4uFpmilKYs5wVTZT3lUGtgYLjhuVkSAXrJhBG8noISnBtT1pKWXOVUAePCMF1yXrM8H6OTTW4b_FunY6rWvgvN8LKiBSsEYcMa1OlGqeBjDNpUbbCvMvQVgeq3z4pX2z4He7axUdn018E_-AfBkXbB</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Huo, Qinghai</creator><creator>Ren, Guangbin</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2067-681X</orcidid><orcidid>https://orcid.org/0000-0003-2490-4234</orcidid></search><sort><creationdate>20220401</creationdate><title>Structure of octonionic Hilbert spaces with applications in the Parseval equality and Cayley–Dickson algebras</title><author>Huo, Qinghai ; Ren, Guangbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-3564c7b950be040f5f53fd180ed48f85b90c855ff7ba275c32c0458f4e755b433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Equality</topic><topic>Hilbert space</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Subspaces</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huo, Qinghai</creatorcontrib><creatorcontrib>Ren, Guangbin</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huo, Qinghai</au><au>Ren, Guangbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of octonionic Hilbert spaces with applications in the Parseval equality and Cayley–Dickson algebras</atitle><jtitle>Journal of mathematical physics</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>63</volume><issue>4</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>Contrary to the simple structure of the tensor product of the quaternionic Hilbert space, the octonionic situation becomes more involved. It turns out that an octonionic Hilbert space can be decomposed as an orthogonal direct sum of two subspaces, each of them isomorphic to a tensor product of an irreducible octonionic Hilbert space with a real Hilbert space. As an application, we find that for a given orthogonal basis, the octonionic Parseval equality holds if and only if the basis is weak associative. Fortunately, there always exists a weak associative orthogonal basis in an octonionic Hilbert space. This completely removes the obstacles caused by the failure of the octonionic Parseval equality.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0085132</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-2067-681X</orcidid><orcidid>https://orcid.org/0000-0003-2490-4234</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2022-04, Vol.63 (4) |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0085132 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Equality Hilbert space Mathematical analysis Physics Subspaces Tensors |
title | Structure of octonionic Hilbert spaces with applications in the Parseval equality and Cayley–Dickson algebras |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A25%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20octonionic%20Hilbert%20spaces%20with%20applications%20in%20the%20Parseval%20equality%20and%20Cayley%E2%80%93Dickson%20algebras&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Huo,%20Qinghai&rft.date=2022-04-01&rft.volume=63&rft.issue=4&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0085132&rft_dat=%3Cproquest_scita%3E2646814468%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646814468&rft_id=info:pmid/&rfr_iscdi=true |