There exist infinitely many kinds of partial separability/entanglement

In tri-partite systems, there are three basic biseparability, A-BC, B-CA, and C-AB, according to bipartitions of local systems. We begin with three convex sets consisting of these basic biseparable states in the three-qubit system, and consider arbitrary iterations of intersections and/or convex hul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2022-04, Vol.63 (4)
Hauptverfasser: Ha, Kil-Chan, Han, Kyung Hoon, Kye, Seung-Hyeok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In tri-partite systems, there are three basic biseparability, A-BC, B-CA, and C-AB, according to bipartitions of local systems. We begin with three convex sets consisting of these basic biseparable states in the three-qubit system, and consider arbitrary iterations of intersections and/or convex hulls of them to get convex cones. One natural way to classify tri-partite states is to consider those convex sets to which they belong or do not belong. This is especially useful to classify partial entanglement of mixed states. We show that the lattice generated by those three basic convex sets with respect to convex hull and intersection has infinitely many mutually distinct members to see that there are infinitely many kinds of three-qubit partial entanglement. To do this, we consider an increasing chain of convex sets in the lattice and exhibit three-qubit Greenberger–Horne–Zeilinger diagonal states distinguishing those convex sets in the chain.
ISSN:0022-2488
1089-7658
DOI:10.1063/5.0084613