Thermo-capillarity in microfluidic binary systems via phase modulated sinusoidal thermal stimuli

In this article, we have explored the theoretical aspects of thermo-capillarity driven hydrodynamics at the interface of an immiscible binary-fluid system within a microfluidic domain. The top and bottom walls of the microfluidic confinement are exposed to sinusoidal thermal stimuli with different m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2022-03, Vol.34 (3)
Hauptverfasser: Agrawal, Shubham, Das, Prashanta K, Dhar, Purbarun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Physics of fluids (1994)
container_volume 34
creator Agrawal, Shubham
Das, Prashanta K
Dhar, Purbarun
description In this article, we have explored the theoretical aspects of thermo-capillarity driven hydrodynamics at the interface of an immiscible binary-fluid system within a microfluidic domain. The top and bottom walls of the microfluidic confinement are exposed to sinusoidal thermal stimuli with different mean values, wave numbers, and phase differences. We explore the influence of different governing parameters on the thermal and hydrodynamic transport due to interfacial thermo-capillarity and within the constituent fluids. To this end, we deduce the full solutions for the temperature field, hydrodynamics, and the interfacial deformation characteristics in an analytical framework, by appealing to the assumption of the creeping flow (vanishingly small Reynolds, Marangoni, and Capillary number regime) and nearly un-deformed interface. Complicated spatial distribution of the isotherms is generated across the fluids, leading to spatially varying thermal gradients across and along the interface. This leads to periodic circulation of the fluids within the microchannel due to the sinusoidal thermal stimulus. It is observed that the interfacial flow strength depends on the relative film thickness and the thermal conductivities of the two fluids. Vortex enveloping phenomenon is observed for lower values of film thickness ratio when the thermal conductivity of the lower fluid is higher relative to the upper fluid. The findings may hold significance for the design and development of thermal stimulus-controlled spatial mixing and solute transport mechanisms in reactive micro- and nano-fluidic devices.
doi_str_mv 10.1063/5.0084216
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0084216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2641648546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-49b72d4fd4dca112b09ba4dd07edf1e9197a37b9b7b9253999e409b03da1d4423</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNV-bbY5SrAoFL_Ucs5ssnZL9MMkK_femtGdPM4eHGd4XoXtKFpRI_lwuCFkKRuUFmlGyVEUlpbw87hUppOT0Gt3EuCeEcMXkDH1vdy50Q9GYEbw3AdIBQ487aMLQ-gksNLiG3oQDjoeYXBfxLxg87kx0uBvs5E1yFkfopziANR6n48E8Y4Ju8nCLrlrjo7s7zzn6Wr9uV-_F5vPtY_WyKRqmWCqEqitmRWuFbQylrCaqNsJaUjnbUqeoqgyv6qxqxUqulHIiE8KtoVYIxufo4XR3DMPP5GLS-2EKfX6pmRRUimUpZFaPJ5XjxRhcq8cAXU6nKdHHAnWpzwVm-3SysYFkEgz9P_gPAwBxfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641648546</pqid></control><display><type>article</type><title>Thermo-capillarity in microfluidic binary systems via phase modulated sinusoidal thermal stimuli</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Agrawal, Shubham ; Das, Prashanta K ; Dhar, Purbarun</creator><creatorcontrib>Agrawal, Shubham ; Das, Prashanta K ; Dhar, Purbarun</creatorcontrib><description>In this article, we have explored the theoretical aspects of thermo-capillarity driven hydrodynamics at the interface of an immiscible binary-fluid system within a microfluidic domain. The top and bottom walls of the microfluidic confinement are exposed to sinusoidal thermal stimuli with different mean values, wave numbers, and phase differences. We explore the influence of different governing parameters on the thermal and hydrodynamic transport due to interfacial thermo-capillarity and within the constituent fluids. To this end, we deduce the full solutions for the temperature field, hydrodynamics, and the interfacial deformation characteristics in an analytical framework, by appealing to the assumption of the creeping flow (vanishingly small Reynolds, Marangoni, and Capillary number regime) and nearly un-deformed interface. Complicated spatial distribution of the isotherms is generated across the fluids, leading to spatially varying thermal gradients across and along the interface. This leads to periodic circulation of the fluids within the microchannel due to the sinusoidal thermal stimulus. It is observed that the interfacial flow strength depends on the relative film thickness and the thermal conductivities of the two fluids. Vortex enveloping phenomenon is observed for lower values of film thickness ratio when the thermal conductivity of the lower fluid is higher relative to the upper fluid. The findings may hold significance for the design and development of thermal stimulus-controlled spatial mixing and solute transport mechanisms in reactive micro- and nano-fluidic devices.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0084216</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Binary systems ; Capillarity ; Deformation ; Film thickness ; Fluid dynamics ; Fluid mechanics ; Fluids ; Hydrodynamics ; Mathematical analysis ; Microchannels ; Microfluidics ; Physics ; Sine waves ; Spatial distribution ; Stimuli ; Temperature distribution ; Temperature gradients ; Thermal conductivity ; Thickness ratio</subject><ispartof>Physics of fluids (1994), 2022-03, Vol.34 (3)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-49b72d4fd4dca112b09ba4dd07edf1e9197a37b9b7b9253999e409b03da1d4423</citedby><cites>FETCH-LOGICAL-c292t-49b72d4fd4dca112b09ba4dd07edf1e9197a37b9b7b9253999e409b03da1d4423</cites><orcidid>0000-0003-3833-5116 ; 0000-0001-5473-2993 ; 0000-0002-3454-0799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Agrawal, Shubham</creatorcontrib><creatorcontrib>Das, Prashanta K</creatorcontrib><creatorcontrib>Dhar, Purbarun</creatorcontrib><title>Thermo-capillarity in microfluidic binary systems via phase modulated sinusoidal thermal stimuli</title><title>Physics of fluids (1994)</title><description>In this article, we have explored the theoretical aspects of thermo-capillarity driven hydrodynamics at the interface of an immiscible binary-fluid system within a microfluidic domain. The top and bottom walls of the microfluidic confinement are exposed to sinusoidal thermal stimuli with different mean values, wave numbers, and phase differences. We explore the influence of different governing parameters on the thermal and hydrodynamic transport due to interfacial thermo-capillarity and within the constituent fluids. To this end, we deduce the full solutions for the temperature field, hydrodynamics, and the interfacial deformation characteristics in an analytical framework, by appealing to the assumption of the creeping flow (vanishingly small Reynolds, Marangoni, and Capillary number regime) and nearly un-deformed interface. Complicated spatial distribution of the isotherms is generated across the fluids, leading to spatially varying thermal gradients across and along the interface. This leads to periodic circulation of the fluids within the microchannel due to the sinusoidal thermal stimulus. It is observed that the interfacial flow strength depends on the relative film thickness and the thermal conductivities of the two fluids. Vortex enveloping phenomenon is observed for lower values of film thickness ratio when the thermal conductivity of the lower fluid is higher relative to the upper fluid. The findings may hold significance for the design and development of thermal stimulus-controlled spatial mixing and solute transport mechanisms in reactive micro- and nano-fluidic devices.</description><subject>Binary systems</subject><subject>Capillarity</subject><subject>Deformation</subject><subject>Film thickness</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Hydrodynamics</subject><subject>Mathematical analysis</subject><subject>Microchannels</subject><subject>Microfluidics</subject><subject>Physics</subject><subject>Sine waves</subject><subject>Spatial distribution</subject><subject>Stimuli</subject><subject>Temperature distribution</subject><subject>Temperature gradients</subject><subject>Thermal conductivity</subject><subject>Thickness ratio</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNV-bbY5SrAoFL_Ucs5ssnZL9MMkK_femtGdPM4eHGd4XoXtKFpRI_lwuCFkKRuUFmlGyVEUlpbw87hUppOT0Gt3EuCeEcMXkDH1vdy50Q9GYEbw3AdIBQ487aMLQ-gksNLiG3oQDjoeYXBfxLxg87kx0uBvs5E1yFkfopziANR6n48E8Y4Ju8nCLrlrjo7s7zzn6Wr9uV-_F5vPtY_WyKRqmWCqEqitmRWuFbQylrCaqNsJaUjnbUqeoqgyv6qxqxUqulHIiE8KtoVYIxufo4XR3DMPP5GLS-2EKfX6pmRRUimUpZFaPJ5XjxRhcq8cAXU6nKdHHAnWpzwVm-3SysYFkEgz9P_gPAwBxfA</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Agrawal, Shubham</creator><creator>Das, Prashanta K</creator><creator>Dhar, Purbarun</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3833-5116</orcidid><orcidid>https://orcid.org/0000-0001-5473-2993</orcidid><orcidid>https://orcid.org/0000-0002-3454-0799</orcidid></search><sort><creationdate>202203</creationdate><title>Thermo-capillarity in microfluidic binary systems via phase modulated sinusoidal thermal stimuli</title><author>Agrawal, Shubham ; Das, Prashanta K ; Dhar, Purbarun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-49b72d4fd4dca112b09ba4dd07edf1e9197a37b9b7b9253999e409b03da1d4423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Binary systems</topic><topic>Capillarity</topic><topic>Deformation</topic><topic>Film thickness</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Hydrodynamics</topic><topic>Mathematical analysis</topic><topic>Microchannels</topic><topic>Microfluidics</topic><topic>Physics</topic><topic>Sine waves</topic><topic>Spatial distribution</topic><topic>Stimuli</topic><topic>Temperature distribution</topic><topic>Temperature gradients</topic><topic>Thermal conductivity</topic><topic>Thickness ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agrawal, Shubham</creatorcontrib><creatorcontrib>Das, Prashanta K</creatorcontrib><creatorcontrib>Dhar, Purbarun</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agrawal, Shubham</au><au>Das, Prashanta K</au><au>Dhar, Purbarun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermo-capillarity in microfluidic binary systems via phase modulated sinusoidal thermal stimuli</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2022-03</date><risdate>2022</risdate><volume>34</volume><issue>3</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>In this article, we have explored the theoretical aspects of thermo-capillarity driven hydrodynamics at the interface of an immiscible binary-fluid system within a microfluidic domain. The top and bottom walls of the microfluidic confinement are exposed to sinusoidal thermal stimuli with different mean values, wave numbers, and phase differences. We explore the influence of different governing parameters on the thermal and hydrodynamic transport due to interfacial thermo-capillarity and within the constituent fluids. To this end, we deduce the full solutions for the temperature field, hydrodynamics, and the interfacial deformation characteristics in an analytical framework, by appealing to the assumption of the creeping flow (vanishingly small Reynolds, Marangoni, and Capillary number regime) and nearly un-deformed interface. Complicated spatial distribution of the isotherms is generated across the fluids, leading to spatially varying thermal gradients across and along the interface. This leads to periodic circulation of the fluids within the microchannel due to the sinusoidal thermal stimulus. It is observed that the interfacial flow strength depends on the relative film thickness and the thermal conductivities of the two fluids. Vortex enveloping phenomenon is observed for lower values of film thickness ratio when the thermal conductivity of the lower fluid is higher relative to the upper fluid. The findings may hold significance for the design and development of thermal stimulus-controlled spatial mixing and solute transport mechanisms in reactive micro- and nano-fluidic devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0084216</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3833-5116</orcidid><orcidid>https://orcid.org/0000-0001-5473-2993</orcidid><orcidid>https://orcid.org/0000-0002-3454-0799</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2022-03, Vol.34 (3)
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_5_0084216
source AIP Journals Complete; Alma/SFX Local Collection
subjects Binary systems
Capillarity
Deformation
Film thickness
Fluid dynamics
Fluid mechanics
Fluids
Hydrodynamics
Mathematical analysis
Microchannels
Microfluidics
Physics
Sine waves
Spatial distribution
Stimuli
Temperature distribution
Temperature gradients
Thermal conductivity
Thickness ratio
title Thermo-capillarity in microfluidic binary systems via phase modulated sinusoidal thermal stimuli
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A58%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermo-capillarity%20in%20microfluidic%20binary%20systems%20via%20phase%20modulated%20sinusoidal%20thermal%20stimuli&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Agrawal,%20Shubham&rft.date=2022-03&rft.volume=34&rft.issue=3&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0084216&rft_dat=%3Cproquest_scita%3E2641648546%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641648546&rft_id=info:pmid/&rfr_iscdi=true