Thermo-capillarity in microfluidic binary systems via phase modulated sinusoidal thermal stimuli
In this article, we have explored the theoretical aspects of thermo-capillarity driven hydrodynamics at the interface of an immiscible binary-fluid system within a microfluidic domain. The top and bottom walls of the microfluidic confinement are exposed to sinusoidal thermal stimuli with different m...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2022-03, Vol.34 (3) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 34 |
creator | Agrawal, Shubham Das, Prashanta K Dhar, Purbarun |
description | In this article, we have explored the theoretical aspects of thermo-capillarity driven hydrodynamics at the interface of an immiscible binary-fluid system within a microfluidic domain. The top and bottom walls of the microfluidic confinement are exposed to sinusoidal thermal stimuli with different mean values, wave numbers, and phase differences. We explore the influence of different governing parameters on the thermal and hydrodynamic transport due to interfacial thermo-capillarity and within the constituent fluids. To this end, we deduce the full solutions for the temperature field, hydrodynamics, and the interfacial deformation characteristics in an analytical framework, by appealing to the assumption of the creeping flow (vanishingly small Reynolds, Marangoni, and Capillary number regime) and nearly un-deformed interface. Complicated spatial distribution of the isotherms is generated across the fluids, leading to spatially varying thermal gradients across and along the interface. This leads to periodic circulation of the fluids within the microchannel due to the sinusoidal thermal stimulus. It is observed that the interfacial flow strength depends on the relative film thickness and the thermal conductivities of the two fluids. Vortex enveloping phenomenon is observed for lower values of film thickness ratio when the thermal conductivity of the lower fluid is higher relative to the upper fluid. The findings may hold significance for the design and development of thermal stimulus-controlled spatial mixing and solute transport mechanisms in reactive micro- and nano-fluidic devices. |
doi_str_mv | 10.1063/5.0084216 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0084216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2641648546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-49b72d4fd4dca112b09ba4dd07edf1e9197a37b9b7b9253999e409b03da1d4423</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNV-bbY5SrAoFL_Ucs5ssnZL9MMkK_femtGdPM4eHGd4XoXtKFpRI_lwuCFkKRuUFmlGyVEUlpbw87hUppOT0Gt3EuCeEcMXkDH1vdy50Q9GYEbw3AdIBQ487aMLQ-gksNLiG3oQDjoeYXBfxLxg87kx0uBvs5E1yFkfopziANR6n48E8Y4Ju8nCLrlrjo7s7zzn6Wr9uV-_F5vPtY_WyKRqmWCqEqitmRWuFbQylrCaqNsJaUjnbUqeoqgyv6qxqxUqulHIiE8KtoVYIxufo4XR3DMPP5GLS-2EKfX6pmRRUimUpZFaPJ5XjxRhcq8cAXU6nKdHHAnWpzwVm-3SysYFkEgz9P_gPAwBxfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641648546</pqid></control><display><type>article</type><title>Thermo-capillarity in microfluidic binary systems via phase modulated sinusoidal thermal stimuli</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Agrawal, Shubham ; Das, Prashanta K ; Dhar, Purbarun</creator><creatorcontrib>Agrawal, Shubham ; Das, Prashanta K ; Dhar, Purbarun</creatorcontrib><description>In this article, we have explored the theoretical aspects of thermo-capillarity driven hydrodynamics at the interface of an immiscible binary-fluid system within a microfluidic domain. The top and bottom walls of the microfluidic confinement are exposed to sinusoidal thermal stimuli with different mean values, wave numbers, and phase differences. We explore the influence of different governing parameters on the thermal and hydrodynamic transport due to interfacial thermo-capillarity and within the constituent fluids. To this end, we deduce the full solutions for the temperature field, hydrodynamics, and the interfacial deformation characteristics in an analytical framework, by appealing to the assumption of the creeping flow (vanishingly small Reynolds, Marangoni, and Capillary number regime) and nearly un-deformed interface. Complicated spatial distribution of the isotherms is generated across the fluids, leading to spatially varying thermal gradients across and along the interface. This leads to periodic circulation of the fluids within the microchannel due to the sinusoidal thermal stimulus. It is observed that the interfacial flow strength depends on the relative film thickness and the thermal conductivities of the two fluids. Vortex enveloping phenomenon is observed for lower values of film thickness ratio when the thermal conductivity of the lower fluid is higher relative to the upper fluid. The findings may hold significance for the design and development of thermal stimulus-controlled spatial mixing and solute transport mechanisms in reactive micro- and nano-fluidic devices.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0084216</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Binary systems ; Capillarity ; Deformation ; Film thickness ; Fluid dynamics ; Fluid mechanics ; Fluids ; Hydrodynamics ; Mathematical analysis ; Microchannels ; Microfluidics ; Physics ; Sine waves ; Spatial distribution ; Stimuli ; Temperature distribution ; Temperature gradients ; Thermal conductivity ; Thickness ratio</subject><ispartof>Physics of fluids (1994), 2022-03, Vol.34 (3)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-49b72d4fd4dca112b09ba4dd07edf1e9197a37b9b7b9253999e409b03da1d4423</citedby><cites>FETCH-LOGICAL-c292t-49b72d4fd4dca112b09ba4dd07edf1e9197a37b9b7b9253999e409b03da1d4423</cites><orcidid>0000-0003-3833-5116 ; 0000-0001-5473-2993 ; 0000-0002-3454-0799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Agrawal, Shubham</creatorcontrib><creatorcontrib>Das, Prashanta K</creatorcontrib><creatorcontrib>Dhar, Purbarun</creatorcontrib><title>Thermo-capillarity in microfluidic binary systems via phase modulated sinusoidal thermal stimuli</title><title>Physics of fluids (1994)</title><description>In this article, we have explored the theoretical aspects of thermo-capillarity driven hydrodynamics at the interface of an immiscible binary-fluid system within a microfluidic domain. The top and bottom walls of the microfluidic confinement are exposed to sinusoidal thermal stimuli with different mean values, wave numbers, and phase differences. We explore the influence of different governing parameters on the thermal and hydrodynamic transport due to interfacial thermo-capillarity and within the constituent fluids. To this end, we deduce the full solutions for the temperature field, hydrodynamics, and the interfacial deformation characteristics in an analytical framework, by appealing to the assumption of the creeping flow (vanishingly small Reynolds, Marangoni, and Capillary number regime) and nearly un-deformed interface. Complicated spatial distribution of the isotherms is generated across the fluids, leading to spatially varying thermal gradients across and along the interface. This leads to periodic circulation of the fluids within the microchannel due to the sinusoidal thermal stimulus. It is observed that the interfacial flow strength depends on the relative film thickness and the thermal conductivities of the two fluids. Vortex enveloping phenomenon is observed for lower values of film thickness ratio when the thermal conductivity of the lower fluid is higher relative to the upper fluid. The findings may hold significance for the design and development of thermal stimulus-controlled spatial mixing and solute transport mechanisms in reactive micro- and nano-fluidic devices.</description><subject>Binary systems</subject><subject>Capillarity</subject><subject>Deformation</subject><subject>Film thickness</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Hydrodynamics</subject><subject>Mathematical analysis</subject><subject>Microchannels</subject><subject>Microfluidics</subject><subject>Physics</subject><subject>Sine waves</subject><subject>Spatial distribution</subject><subject>Stimuli</subject><subject>Temperature distribution</subject><subject>Temperature gradients</subject><subject>Thermal conductivity</subject><subject>Thickness ratio</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNV-bbY5SrAoFL_Ucs5ssnZL9MMkK_femtGdPM4eHGd4XoXtKFpRI_lwuCFkKRuUFmlGyVEUlpbw87hUppOT0Gt3EuCeEcMXkDH1vdy50Q9GYEbw3AdIBQ487aMLQ-gksNLiG3oQDjoeYXBfxLxg87kx0uBvs5E1yFkfopziANR6n48E8Y4Ju8nCLrlrjo7s7zzn6Wr9uV-_F5vPtY_WyKRqmWCqEqitmRWuFbQylrCaqNsJaUjnbUqeoqgyv6qxqxUqulHIiE8KtoVYIxufo4XR3DMPP5GLS-2EKfX6pmRRUimUpZFaPJ5XjxRhcq8cAXU6nKdHHAnWpzwVm-3SysYFkEgz9P_gPAwBxfA</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Agrawal, Shubham</creator><creator>Das, Prashanta K</creator><creator>Dhar, Purbarun</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3833-5116</orcidid><orcidid>https://orcid.org/0000-0001-5473-2993</orcidid><orcidid>https://orcid.org/0000-0002-3454-0799</orcidid></search><sort><creationdate>202203</creationdate><title>Thermo-capillarity in microfluidic binary systems via phase modulated sinusoidal thermal stimuli</title><author>Agrawal, Shubham ; Das, Prashanta K ; Dhar, Purbarun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-49b72d4fd4dca112b09ba4dd07edf1e9197a37b9b7b9253999e409b03da1d4423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Binary systems</topic><topic>Capillarity</topic><topic>Deformation</topic><topic>Film thickness</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Hydrodynamics</topic><topic>Mathematical analysis</topic><topic>Microchannels</topic><topic>Microfluidics</topic><topic>Physics</topic><topic>Sine waves</topic><topic>Spatial distribution</topic><topic>Stimuli</topic><topic>Temperature distribution</topic><topic>Temperature gradients</topic><topic>Thermal conductivity</topic><topic>Thickness ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agrawal, Shubham</creatorcontrib><creatorcontrib>Das, Prashanta K</creatorcontrib><creatorcontrib>Dhar, Purbarun</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agrawal, Shubham</au><au>Das, Prashanta K</au><au>Dhar, Purbarun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermo-capillarity in microfluidic binary systems via phase modulated sinusoidal thermal stimuli</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2022-03</date><risdate>2022</risdate><volume>34</volume><issue>3</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>In this article, we have explored the theoretical aspects of thermo-capillarity driven hydrodynamics at the interface of an immiscible binary-fluid system within a microfluidic domain. The top and bottom walls of the microfluidic confinement are exposed to sinusoidal thermal stimuli with different mean values, wave numbers, and phase differences. We explore the influence of different governing parameters on the thermal and hydrodynamic transport due to interfacial thermo-capillarity and within the constituent fluids. To this end, we deduce the full solutions for the temperature field, hydrodynamics, and the interfacial deformation characteristics in an analytical framework, by appealing to the assumption of the creeping flow (vanishingly small Reynolds, Marangoni, and Capillary number regime) and nearly un-deformed interface. Complicated spatial distribution of the isotherms is generated across the fluids, leading to spatially varying thermal gradients across and along the interface. This leads to periodic circulation of the fluids within the microchannel due to the sinusoidal thermal stimulus. It is observed that the interfacial flow strength depends on the relative film thickness and the thermal conductivities of the two fluids. Vortex enveloping phenomenon is observed for lower values of film thickness ratio when the thermal conductivity of the lower fluid is higher relative to the upper fluid. The findings may hold significance for the design and development of thermal stimulus-controlled spatial mixing and solute transport mechanisms in reactive micro- and nano-fluidic devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0084216</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3833-5116</orcidid><orcidid>https://orcid.org/0000-0001-5473-2993</orcidid><orcidid>https://orcid.org/0000-0002-3454-0799</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2022-03, Vol.34 (3) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0084216 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Binary systems Capillarity Deformation Film thickness Fluid dynamics Fluid mechanics Fluids Hydrodynamics Mathematical analysis Microchannels Microfluidics Physics Sine waves Spatial distribution Stimuli Temperature distribution Temperature gradients Thermal conductivity Thickness ratio |
title | Thermo-capillarity in microfluidic binary systems via phase modulated sinusoidal thermal stimuli |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A58%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermo-capillarity%20in%20microfluidic%20binary%20systems%20via%20phase%20modulated%20sinusoidal%20thermal%20stimuli&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Agrawal,%20Shubham&rft.date=2022-03&rft.volume=34&rft.issue=3&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0084216&rft_dat=%3Cproquest_scita%3E2641648546%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641648546&rft_id=info:pmid/&rfr_iscdi=true |