An LSTM-based approach for predicting idiopathic pulmonary fibrosis progression

Pulmonary fibrosis is a progressive lung disease that occurs when lung tissues get scarred and damaged. Although this condition cannot be completely treated, early identification and prediction of its progression can assist to keep it under control. Since this disease can occur without any cause it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Venkatesh, D., Valarmathi, R., Uma, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2464
creator Venkatesh, D.
Valarmathi, R.
Uma, R.
description Pulmonary fibrosis is a progressive lung disease that occurs when lung tissues get scarred and damaged. Although this condition cannot be completely treated, early identification and prediction of its progression can assist to keep it under control. Since this disease can occur without any cause it is termed “Idiopathic”. This disease can cause shortness of breath, fatigue, a dry cough, etc., and lead to death if left uncared. The objective of this paper is to use the patient’s HRCT images from the CT scanner, forced vital capacity (FVC) assessed with a spirometer, and other patient information like sex, smoking status, and so on to predict the severity of idiopathic pulmonary fibrosis progression in the lungs. Nowadays, Machine Learning plays a significant part in the healthcare sector for predicting and diagnosing various diseases, image segmentation, drug discovery, etc. The LSTM (Long Short Term Memory) model is utilized in this work to predict disease progression. The LSTM is a kind of RNN (Recurrent neural network) that is effectively used for predicting time series data and for sequence prediction problems. This model predicts the future values of FVC measurements through which we can know the patient’s severity of the decline.
doi_str_mv 10.1063/5.0082651
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0082651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2669727044</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-e8fbacc05eb0695a814d9501605dae317a8a5a9b2969a1f152e8abb67c54be1d3</originalsourceid><addsrcrecordid>eNp90M1KAzEUBeAgCtbqwjcYcCdMzZ2Z_C1L0SpUurCCu3Azk2lT2klMpoJv70gL7lzdzcc9h0PILdAJUF4-sAmlsuAMzsgIGINccODnZESpqvKiKj8uyVVKW0oLJYQckeW0yxZvq9fcYLJNhiFEj_Uma33MQrSNq3vXrTPXOB-w37g6C4fd3ncYv7PWmeiTSwP062hTcr67Jhct7pK9Od0xeX96XM2e88Vy_jKbLvIAXPa5la3BuqbMGsoVQwlVoxgFTlmDtgSBEhkqUyiuEFpghZVoDBc1q4yFphyTu-PfIfvzYFOvt_4QuyFSF5wrUQhaVYO6P6pUux77oZ8O0e2H8hqo_h1MM30a7D_85eMf1KFpyx8oHmyc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2669727044</pqid></control><display><type>conference_proceeding</type><title>An LSTM-based approach for predicting idiopathic pulmonary fibrosis progression</title><source>AIP Journals Complete</source><creator>Venkatesh, D. ; Valarmathi, R. ; Uma, R.</creator><contributor>Subramaniam, T. K. ; Sivakumar, N.</contributor><creatorcontrib>Venkatesh, D. ; Valarmathi, R. ; Uma, R. ; Subramaniam, T. K. ; Sivakumar, N.</creatorcontrib><description>Pulmonary fibrosis is a progressive lung disease that occurs when lung tissues get scarred and damaged. Although this condition cannot be completely treated, early identification and prediction of its progression can assist to keep it under control. Since this disease can occur without any cause it is termed “Idiopathic”. This disease can cause shortness of breath, fatigue, a dry cough, etc., and lead to death if left uncared. The objective of this paper is to use the patient’s HRCT images from the CT scanner, forced vital capacity (FVC) assessed with a spirometer, and other patient information like sex, smoking status, and so on to predict the severity of idiopathic pulmonary fibrosis progression in the lungs. Nowadays, Machine Learning plays a significant part in the healthcare sector for predicting and diagnosing various diseases, image segmentation, drug discovery, etc. The LSTM (Long Short Term Memory) model is utilized in this work to predict disease progression. The LSTM is a kind of RNN (Recurrent neural network) that is effectively used for predicting time series data and for sequence prediction problems. This model predicts the future values of FVC measurements through which we can know the patient’s severity of the decline.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0082651</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computed tomography ; Disease ; Disease control ; Fibrosis ; Image segmentation ; Machine learning ; Medical imaging ; Predictions ; Pulmonary fibrosis ; Recurrent neural networks</subject><ispartof>AIP Conference Proceedings, 2022, Vol.2464 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0082651$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,795,4513,23935,23936,25145,27929,27930,76389</link.rule.ids></links><search><contributor>Subramaniam, T. K.</contributor><contributor>Sivakumar, N.</contributor><creatorcontrib>Venkatesh, D.</creatorcontrib><creatorcontrib>Valarmathi, R.</creatorcontrib><creatorcontrib>Uma, R.</creatorcontrib><title>An LSTM-based approach for predicting idiopathic pulmonary fibrosis progression</title><title>AIP Conference Proceedings</title><description>Pulmonary fibrosis is a progressive lung disease that occurs when lung tissues get scarred and damaged. Although this condition cannot be completely treated, early identification and prediction of its progression can assist to keep it under control. Since this disease can occur without any cause it is termed “Idiopathic”. This disease can cause shortness of breath, fatigue, a dry cough, etc., and lead to death if left uncared. The objective of this paper is to use the patient’s HRCT images from the CT scanner, forced vital capacity (FVC) assessed with a spirometer, and other patient information like sex, smoking status, and so on to predict the severity of idiopathic pulmonary fibrosis progression in the lungs. Nowadays, Machine Learning plays a significant part in the healthcare sector for predicting and diagnosing various diseases, image segmentation, drug discovery, etc. The LSTM (Long Short Term Memory) model is utilized in this work to predict disease progression. The LSTM is a kind of RNN (Recurrent neural network) that is effectively used for predicting time series data and for sequence prediction problems. This model predicts the future values of FVC measurements through which we can know the patient’s severity of the decline.</description><subject>Computed tomography</subject><subject>Disease</subject><subject>Disease control</subject><subject>Fibrosis</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Predictions</subject><subject>Pulmonary fibrosis</subject><subject>Recurrent neural networks</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp90M1KAzEUBeAgCtbqwjcYcCdMzZ2Z_C1L0SpUurCCu3Azk2lT2klMpoJv70gL7lzdzcc9h0PILdAJUF4-sAmlsuAMzsgIGINccODnZESpqvKiKj8uyVVKW0oLJYQckeW0yxZvq9fcYLJNhiFEj_Uma33MQrSNq3vXrTPXOB-w37g6C4fd3ncYv7PWmeiTSwP062hTcr67Jhct7pK9Od0xeX96XM2e88Vy_jKbLvIAXPa5la3BuqbMGsoVQwlVoxgFTlmDtgSBEhkqUyiuEFpghZVoDBc1q4yFphyTu-PfIfvzYFOvt_4QuyFSF5wrUQhaVYO6P6pUux77oZ8O0e2H8hqo_h1MM30a7D_85eMf1KFpyx8oHmyc</recordid><startdate>20220526</startdate><enddate>20220526</enddate><creator>Venkatesh, D.</creator><creator>Valarmathi, R.</creator><creator>Uma, R.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20220526</creationdate><title>An LSTM-based approach for predicting idiopathic pulmonary fibrosis progression</title><author>Venkatesh, D. ; Valarmathi, R. ; Uma, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-e8fbacc05eb0695a814d9501605dae317a8a5a9b2969a1f152e8abb67c54be1d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computed tomography</topic><topic>Disease</topic><topic>Disease control</topic><topic>Fibrosis</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Predictions</topic><topic>Pulmonary fibrosis</topic><topic>Recurrent neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venkatesh, D.</creatorcontrib><creatorcontrib>Valarmathi, R.</creatorcontrib><creatorcontrib>Uma, R.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venkatesh, D.</au><au>Valarmathi, R.</au><au>Uma, R.</au><au>Subramaniam, T. K.</au><au>Sivakumar, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An LSTM-based approach for predicting idiopathic pulmonary fibrosis progression</atitle><btitle>AIP Conference Proceedings</btitle><date>2022-05-26</date><risdate>2022</risdate><volume>2464</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Pulmonary fibrosis is a progressive lung disease that occurs when lung tissues get scarred and damaged. Although this condition cannot be completely treated, early identification and prediction of its progression can assist to keep it under control. Since this disease can occur without any cause it is termed “Idiopathic”. This disease can cause shortness of breath, fatigue, a dry cough, etc., and lead to death if left uncared. The objective of this paper is to use the patient’s HRCT images from the CT scanner, forced vital capacity (FVC) assessed with a spirometer, and other patient information like sex, smoking status, and so on to predict the severity of idiopathic pulmonary fibrosis progression in the lungs. Nowadays, Machine Learning plays a significant part in the healthcare sector for predicting and diagnosing various diseases, image segmentation, drug discovery, etc. The LSTM (Long Short Term Memory) model is utilized in this work to predict disease progression. The LSTM is a kind of RNN (Recurrent neural network) that is effectively used for predicting time series data and for sequence prediction problems. This model predicts the future values of FVC measurements through which we can know the patient’s severity of the decline.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0082651</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2022, Vol.2464 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0082651
source AIP Journals Complete
subjects Computed tomography
Disease
Disease control
Fibrosis
Image segmentation
Machine learning
Medical imaging
Predictions
Pulmonary fibrosis
Recurrent neural networks
title An LSTM-based approach for predicting idiopathic pulmonary fibrosis progression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T09%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20LSTM-based%20approach%20for%20predicting%20idiopathic%20pulmonary%20fibrosis%20progression&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Venkatesh,%20D.&rft.date=2022-05-26&rft.volume=2464&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0082651&rft_dat=%3Cproquest_scita%3E2669727044%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2669727044&rft_id=info:pmid/&rfr_iscdi=true