Elucidating size effects on the yield strength of single-crystal Cu via the Richtmyer–Meshkov instability

Capturing the dynamic response of a material under high strain-rate deformation often demands challenging and time consuming experimental effort. While shock hydrodynamic simulation methods can aid in this area, a priori characterizations of the material strength under shock loading and spall failur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2022-03, Vol.131 (11)
Hauptverfasser: Stewart, James A., Olles, Joseph D., Wood, Mitchell A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Journal of applied physics
container_volume 131
creator Stewart, James A.
Olles, Joseph D.
Wood, Mitchell A.
description Capturing the dynamic response of a material under high strain-rate deformation often demands challenging and time consuming experimental effort. While shock hydrodynamic simulation methods can aid in this area, a priori characterizations of the material strength under shock loading and spall failure are needed in order to parameterize constitutive models needed for these computational tools. Moreover, parameterizations of strain-rate-dependent strength models are needed to capture the full suite of Richtmyer–Meshkov instability (RMI) behavior of shock compressed metals, creating an unrealistic demand for these training data solely on experiments. Herein, we sweep a large range of geometric, crystallographic, and shock conditions within molecular dynamics (MD) simulations and demonstrate the breadth of RMI in Cu that can be captured from the atomic scale. Yield strength measurements from jetted and arrested material from a sinusoidal surface perturbation were quantified as Y RMI = 0.787 ± 0.374 GPa, higher than strain-rate-independent models used in experimentally matched hydrodynamic simulations. Defect-free, single-crystal Cu samples used in MD will overestimate Y RMI, but the drastic scale difference between experiment and MD is highlighted by high confidence neighborhood clustering predictions of RMI characterizations, yielding incorrect classifications.
doi_str_mv 10.1063/5.0082495
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0082495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2639829383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-efbb879f3860acb2054d6ed84a561ada252a072b41d3145bb8e39f98e9853c1d3</originalsourceid><addsrcrecordid>eNqd0MtqGzEUBmBRGqibdNE3EM0qgUl0GY2lZTBOU0gplHYtNJojj5KJ5EiyYbrqO-QN-yRR6kD3XR04fJzLj9BHSi4o6filuCBEslaJN2hBiVTNUgjyFi0IYbSRaqneofc53xFCqeRqge7X0876wRQfNjj7X4DBObAl4xhwGQHPHqYB55IgbMqIo6sqbCZobJpzMRNe7fDem7_2u7djeZgh_fn99BXyeB_32Ieqej_5Mp-gI2emDB9e6zH6eb3-sbppbr99_rK6um0sl6o04PpeLpXjsiPG9oyIduhgkK0RHTWDYYIZsmR9SwdOW1ExcOWUBCUFt7V5jD4d5sZcvM7WF7CjjSHUvzSVQjDVVnR6QNsUH3eQi76LuxTqXZp1XEmmuORVnR2UTTHnBE5vk38wadaU6JfAtdCvgVd7frAvG2ugMfwf3sf0D-rt4Pgz_-WQWA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639829383</pqid></control><display><type>article</type><title>Elucidating size effects on the yield strength of single-crystal Cu via the Richtmyer–Meshkov instability</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Stewart, James A. ; Olles, Joseph D. ; Wood, Mitchell A.</creator><creatorcontrib>Stewart, James A. ; Olles, Joseph D. ; Wood, Mitchell A.</creatorcontrib><description>Capturing the dynamic response of a material under high strain-rate deformation often demands challenging and time consuming experimental effort. While shock hydrodynamic simulation methods can aid in this area, a priori characterizations of the material strength under shock loading and spall failure are needed in order to parameterize constitutive models needed for these computational tools. Moreover, parameterizations of strain-rate-dependent strength models are needed to capture the full suite of Richtmyer–Meshkov instability (RMI) behavior of shock compressed metals, creating an unrealistic demand for these training data solely on experiments. Herein, we sweep a large range of geometric, crystallographic, and shock conditions within molecular dynamics (MD) simulations and demonstrate the breadth of RMI in Cu that can be captured from the atomic scale. Yield strength measurements from jetted and arrested material from a sinusoidal surface perturbation were quantified as Y RMI = 0.787 ± 0.374 GPa, higher than strain-rate-independent models used in experimentally matched hydrodynamic simulations. Defect-free, single-crystal Cu samples used in MD will overestimate Y RMI, but the drastic scale difference between experiment and MD is highlighted by high confidence neighborhood clustering predictions of RMI characterizations, yielding incorrect classifications.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0082495</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Clustering ; Constitutive models ; Crystal defects ; Crystallography ; Dynamic response ; Dynamic stability ; Mathematical models ; Molecular dynamics ; Perturbation ; Richtmeyer-Meshkov instability ; Shock loading ; Simulation ; Single crystals ; Size effects ; Software ; Strain rate ; Yield strength ; Yield stress</subject><ispartof>Journal of applied physics, 2022-03, Vol.131 (11)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-efbb879f3860acb2054d6ed84a561ada252a072b41d3145bb8e39f98e9853c1d3</citedby><cites>FETCH-LOGICAL-c389t-efbb879f3860acb2054d6ed84a561ada252a072b41d3145bb8e39f98e9853c1d3</cites><orcidid>0000-0003-4587-1304 ; 0000-0001-5878-4096 ; 0000000158784096 ; 0000000345871304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0082495$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4511,27923,27924,76255</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1855294$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Stewart, James A.</creatorcontrib><creatorcontrib>Olles, Joseph D.</creatorcontrib><creatorcontrib>Wood, Mitchell A.</creatorcontrib><title>Elucidating size effects on the yield strength of single-crystal Cu via the Richtmyer–Meshkov instability</title><title>Journal of applied physics</title><description>Capturing the dynamic response of a material under high strain-rate deformation often demands challenging and time consuming experimental effort. While shock hydrodynamic simulation methods can aid in this area, a priori characterizations of the material strength under shock loading and spall failure are needed in order to parameterize constitutive models needed for these computational tools. Moreover, parameterizations of strain-rate-dependent strength models are needed to capture the full suite of Richtmyer–Meshkov instability (RMI) behavior of shock compressed metals, creating an unrealistic demand for these training data solely on experiments. Herein, we sweep a large range of geometric, crystallographic, and shock conditions within molecular dynamics (MD) simulations and demonstrate the breadth of RMI in Cu that can be captured from the atomic scale. Yield strength measurements from jetted and arrested material from a sinusoidal surface perturbation were quantified as Y RMI = 0.787 ± 0.374 GPa, higher than strain-rate-independent models used in experimentally matched hydrodynamic simulations. Defect-free, single-crystal Cu samples used in MD will overestimate Y RMI, but the drastic scale difference between experiment and MD is highlighted by high confidence neighborhood clustering predictions of RMI characterizations, yielding incorrect classifications.</description><subject>Applied physics</subject><subject>Clustering</subject><subject>Constitutive models</subject><subject>Crystal defects</subject><subject>Crystallography</subject><subject>Dynamic response</subject><subject>Dynamic stability</subject><subject>Mathematical models</subject><subject>Molecular dynamics</subject><subject>Perturbation</subject><subject>Richtmeyer-Meshkov instability</subject><subject>Shock loading</subject><subject>Simulation</subject><subject>Single crystals</subject><subject>Size effects</subject><subject>Software</subject><subject>Strain rate</subject><subject>Yield strength</subject><subject>Yield stress</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqd0MtqGzEUBmBRGqibdNE3EM0qgUl0GY2lZTBOU0gplHYtNJojj5KJ5EiyYbrqO-QN-yRR6kD3XR04fJzLj9BHSi4o6filuCBEslaJN2hBiVTNUgjyFi0IYbSRaqneofc53xFCqeRqge7X0876wRQfNjj7X4DBObAl4xhwGQHPHqYB55IgbMqIo6sqbCZobJpzMRNe7fDem7_2u7djeZgh_fn99BXyeB_32Ieqej_5Mp-gI2emDB9e6zH6eb3-sbppbr99_rK6um0sl6o04PpeLpXjsiPG9oyIduhgkK0RHTWDYYIZsmR9SwdOW1ExcOWUBCUFt7V5jD4d5sZcvM7WF7CjjSHUvzSVQjDVVnR6QNsUH3eQi76LuxTqXZp1XEmmuORVnR2UTTHnBE5vk38wadaU6JfAtdCvgVd7frAvG2ugMfwf3sf0D-rt4Pgz_-WQWA</recordid><startdate>20220321</startdate><enddate>20220321</enddate><creator>Stewart, James A.</creator><creator>Olles, Joseph D.</creator><creator>Wood, Mitchell A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4587-1304</orcidid><orcidid>https://orcid.org/0000-0001-5878-4096</orcidid><orcidid>https://orcid.org/0000000158784096</orcidid><orcidid>https://orcid.org/0000000345871304</orcidid></search><sort><creationdate>20220321</creationdate><title>Elucidating size effects on the yield strength of single-crystal Cu via the Richtmyer–Meshkov instability</title><author>Stewart, James A. ; Olles, Joseph D. ; Wood, Mitchell A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-efbb879f3860acb2054d6ed84a561ada252a072b41d3145bb8e39f98e9853c1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Clustering</topic><topic>Constitutive models</topic><topic>Crystal defects</topic><topic>Crystallography</topic><topic>Dynamic response</topic><topic>Dynamic stability</topic><topic>Mathematical models</topic><topic>Molecular dynamics</topic><topic>Perturbation</topic><topic>Richtmeyer-Meshkov instability</topic><topic>Shock loading</topic><topic>Simulation</topic><topic>Single crystals</topic><topic>Size effects</topic><topic>Software</topic><topic>Strain rate</topic><topic>Yield strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stewart, James A.</creatorcontrib><creatorcontrib>Olles, Joseph D.</creatorcontrib><creatorcontrib>Wood, Mitchell A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stewart, James A.</au><au>Olles, Joseph D.</au><au>Wood, Mitchell A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidating size effects on the yield strength of single-crystal Cu via the Richtmyer–Meshkov instability</atitle><jtitle>Journal of applied physics</jtitle><date>2022-03-21</date><risdate>2022</risdate><volume>131</volume><issue>11</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Capturing the dynamic response of a material under high strain-rate deformation often demands challenging and time consuming experimental effort. While shock hydrodynamic simulation methods can aid in this area, a priori characterizations of the material strength under shock loading and spall failure are needed in order to parameterize constitutive models needed for these computational tools. Moreover, parameterizations of strain-rate-dependent strength models are needed to capture the full suite of Richtmyer–Meshkov instability (RMI) behavior of shock compressed metals, creating an unrealistic demand for these training data solely on experiments. Herein, we sweep a large range of geometric, crystallographic, and shock conditions within molecular dynamics (MD) simulations and demonstrate the breadth of RMI in Cu that can be captured from the atomic scale. Yield strength measurements from jetted and arrested material from a sinusoidal surface perturbation were quantified as Y RMI = 0.787 ± 0.374 GPa, higher than strain-rate-independent models used in experimentally matched hydrodynamic simulations. Defect-free, single-crystal Cu samples used in MD will overestimate Y RMI, but the drastic scale difference between experiment and MD is highlighted by high confidence neighborhood clustering predictions of RMI characterizations, yielding incorrect classifications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0082495</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4587-1304</orcidid><orcidid>https://orcid.org/0000-0001-5878-4096</orcidid><orcidid>https://orcid.org/0000000158784096</orcidid><orcidid>https://orcid.org/0000000345871304</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2022-03, Vol.131 (11)
issn 0021-8979
1089-7550
language eng
recordid cdi_scitation_primary_10_1063_5_0082495
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Clustering
Constitutive models
Crystal defects
Crystallography
Dynamic response
Dynamic stability
Mathematical models
Molecular dynamics
Perturbation
Richtmeyer-Meshkov instability
Shock loading
Simulation
Single crystals
Size effects
Software
Strain rate
Yield strength
Yield stress
title Elucidating size effects on the yield strength of single-crystal Cu via the Richtmyer–Meshkov instability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A50%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidating%20size%20effects%20on%20the%20yield%20strength%20of%20single-crystal%20Cu%20via%20the%20Richtmyer%E2%80%93Meshkov%20instability&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Stewart,%20James%20A.&rft.date=2022-03-21&rft.volume=131&rft.issue=11&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0082495&rft_dat=%3Cproquest_scita%3E2639829383%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639829383&rft_id=info:pmid/&rfr_iscdi=true