Elucidating size effects on the yield strength of single-crystal Cu via the Richtmyer–Meshkov instability
Capturing the dynamic response of a material under high strain-rate deformation often demands challenging and time consuming experimental effort. While shock hydrodynamic simulation methods can aid in this area, a priori characterizations of the material strength under shock loading and spall failur...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2022-03, Vol.131 (11) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 131 |
creator | Stewart, James A. Olles, Joseph D. Wood, Mitchell A. |
description | Capturing the dynamic response of a material under high strain-rate deformation often demands challenging and time consuming experimental effort. While shock hydrodynamic simulation methods can aid in this area, a priori characterizations of the material strength under shock loading and spall failure are needed in order to parameterize constitutive models needed for these computational tools. Moreover, parameterizations of strain-rate-dependent strength models are needed to capture the full suite of Richtmyer–Meshkov instability (RMI) behavior of shock compressed metals, creating an unrealistic demand for these training data solely on experiments. Herein, we sweep a large range of geometric, crystallographic, and shock conditions within molecular dynamics (MD) simulations and demonstrate the breadth of RMI in Cu that can be captured from the atomic scale. Yield strength measurements from jetted and arrested material from a sinusoidal surface perturbation were quantified as
Y
RMI
=
0.787
±
0.374 GPa, higher than strain-rate-independent models used in experimentally matched hydrodynamic simulations. Defect-free, single-crystal Cu samples used in MD will overestimate
Y
RMI, but the drastic scale difference between experiment and MD is highlighted by high confidence neighborhood clustering predictions of RMI characterizations, yielding incorrect classifications. |
doi_str_mv | 10.1063/5.0082495 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0082495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2639829383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-efbb879f3860acb2054d6ed84a561ada252a072b41d3145bb8e39f98e9853c1d3</originalsourceid><addsrcrecordid>eNqd0MtqGzEUBmBRGqibdNE3EM0qgUl0GY2lZTBOU0gplHYtNJojj5KJ5EiyYbrqO-QN-yRR6kD3XR04fJzLj9BHSi4o6filuCBEslaJN2hBiVTNUgjyFi0IYbSRaqneofc53xFCqeRqge7X0876wRQfNjj7X4DBObAl4xhwGQHPHqYB55IgbMqIo6sqbCZobJpzMRNe7fDem7_2u7djeZgh_fn99BXyeB_32Ieqej_5Mp-gI2emDB9e6zH6eb3-sbppbr99_rK6um0sl6o04PpeLpXjsiPG9oyIduhgkK0RHTWDYYIZsmR9SwdOW1ExcOWUBCUFt7V5jD4d5sZcvM7WF7CjjSHUvzSVQjDVVnR6QNsUH3eQi76LuxTqXZp1XEmmuORVnR2UTTHnBE5vk38wadaU6JfAtdCvgVd7frAvG2ugMfwf3sf0D-rt4Pgz_-WQWA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639829383</pqid></control><display><type>article</type><title>Elucidating size effects on the yield strength of single-crystal Cu via the Richtmyer–Meshkov instability</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Stewart, James A. ; Olles, Joseph D. ; Wood, Mitchell A.</creator><creatorcontrib>Stewart, James A. ; Olles, Joseph D. ; Wood, Mitchell A.</creatorcontrib><description>Capturing the dynamic response of a material under high strain-rate deformation often demands challenging and time consuming experimental effort. While shock hydrodynamic simulation methods can aid in this area, a priori characterizations of the material strength under shock loading and spall failure are needed in order to parameterize constitutive models needed for these computational tools. Moreover, parameterizations of strain-rate-dependent strength models are needed to capture the full suite of Richtmyer–Meshkov instability (RMI) behavior of shock compressed metals, creating an unrealistic demand for these training data solely on experiments. Herein, we sweep a large range of geometric, crystallographic, and shock conditions within molecular dynamics (MD) simulations and demonstrate the breadth of RMI in Cu that can be captured from the atomic scale. Yield strength measurements from jetted and arrested material from a sinusoidal surface perturbation were quantified as
Y
RMI
=
0.787
±
0.374 GPa, higher than strain-rate-independent models used in experimentally matched hydrodynamic simulations. Defect-free, single-crystal Cu samples used in MD will overestimate
Y
RMI, but the drastic scale difference between experiment and MD is highlighted by high confidence neighborhood clustering predictions of RMI characterizations, yielding incorrect classifications.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0082495</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Clustering ; Constitutive models ; Crystal defects ; Crystallography ; Dynamic response ; Dynamic stability ; Mathematical models ; Molecular dynamics ; Perturbation ; Richtmeyer-Meshkov instability ; Shock loading ; Simulation ; Single crystals ; Size effects ; Software ; Strain rate ; Yield strength ; Yield stress</subject><ispartof>Journal of applied physics, 2022-03, Vol.131 (11)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-efbb879f3860acb2054d6ed84a561ada252a072b41d3145bb8e39f98e9853c1d3</citedby><cites>FETCH-LOGICAL-c389t-efbb879f3860acb2054d6ed84a561ada252a072b41d3145bb8e39f98e9853c1d3</cites><orcidid>0000-0003-4587-1304 ; 0000-0001-5878-4096 ; 0000000158784096 ; 0000000345871304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0082495$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4511,27923,27924,76255</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1855294$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Stewart, James A.</creatorcontrib><creatorcontrib>Olles, Joseph D.</creatorcontrib><creatorcontrib>Wood, Mitchell A.</creatorcontrib><title>Elucidating size effects on the yield strength of single-crystal Cu via the Richtmyer–Meshkov instability</title><title>Journal of applied physics</title><description>Capturing the dynamic response of a material under high strain-rate deformation often demands challenging and time consuming experimental effort. While shock hydrodynamic simulation methods can aid in this area, a priori characterizations of the material strength under shock loading and spall failure are needed in order to parameterize constitutive models needed for these computational tools. Moreover, parameterizations of strain-rate-dependent strength models are needed to capture the full suite of Richtmyer–Meshkov instability (RMI) behavior of shock compressed metals, creating an unrealistic demand for these training data solely on experiments. Herein, we sweep a large range of geometric, crystallographic, and shock conditions within molecular dynamics (MD) simulations and demonstrate the breadth of RMI in Cu that can be captured from the atomic scale. Yield strength measurements from jetted and arrested material from a sinusoidal surface perturbation were quantified as
Y
RMI
=
0.787
±
0.374 GPa, higher than strain-rate-independent models used in experimentally matched hydrodynamic simulations. Defect-free, single-crystal Cu samples used in MD will overestimate
Y
RMI, but the drastic scale difference between experiment and MD is highlighted by high confidence neighborhood clustering predictions of RMI characterizations, yielding incorrect classifications.</description><subject>Applied physics</subject><subject>Clustering</subject><subject>Constitutive models</subject><subject>Crystal defects</subject><subject>Crystallography</subject><subject>Dynamic response</subject><subject>Dynamic stability</subject><subject>Mathematical models</subject><subject>Molecular dynamics</subject><subject>Perturbation</subject><subject>Richtmeyer-Meshkov instability</subject><subject>Shock loading</subject><subject>Simulation</subject><subject>Single crystals</subject><subject>Size effects</subject><subject>Software</subject><subject>Strain rate</subject><subject>Yield strength</subject><subject>Yield stress</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqd0MtqGzEUBmBRGqibdNE3EM0qgUl0GY2lZTBOU0gplHYtNJojj5KJ5EiyYbrqO-QN-yRR6kD3XR04fJzLj9BHSi4o6filuCBEslaJN2hBiVTNUgjyFi0IYbSRaqneofc53xFCqeRqge7X0876wRQfNjj7X4DBObAl4xhwGQHPHqYB55IgbMqIo6sqbCZobJpzMRNe7fDem7_2u7djeZgh_fn99BXyeB_32Ieqej_5Mp-gI2emDB9e6zH6eb3-sbppbr99_rK6um0sl6o04PpeLpXjsiPG9oyIduhgkK0RHTWDYYIZsmR9SwdOW1ExcOWUBCUFt7V5jD4d5sZcvM7WF7CjjSHUvzSVQjDVVnR6QNsUH3eQi76LuxTqXZp1XEmmuORVnR2UTTHnBE5vk38wadaU6JfAtdCvgVd7frAvG2ugMfwf3sf0D-rt4Pgz_-WQWA</recordid><startdate>20220321</startdate><enddate>20220321</enddate><creator>Stewart, James A.</creator><creator>Olles, Joseph D.</creator><creator>Wood, Mitchell A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4587-1304</orcidid><orcidid>https://orcid.org/0000-0001-5878-4096</orcidid><orcidid>https://orcid.org/0000000158784096</orcidid><orcidid>https://orcid.org/0000000345871304</orcidid></search><sort><creationdate>20220321</creationdate><title>Elucidating size effects on the yield strength of single-crystal Cu via the Richtmyer–Meshkov instability</title><author>Stewart, James A. ; Olles, Joseph D. ; Wood, Mitchell A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-efbb879f3860acb2054d6ed84a561ada252a072b41d3145bb8e39f98e9853c1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Clustering</topic><topic>Constitutive models</topic><topic>Crystal defects</topic><topic>Crystallography</topic><topic>Dynamic response</topic><topic>Dynamic stability</topic><topic>Mathematical models</topic><topic>Molecular dynamics</topic><topic>Perturbation</topic><topic>Richtmeyer-Meshkov instability</topic><topic>Shock loading</topic><topic>Simulation</topic><topic>Single crystals</topic><topic>Size effects</topic><topic>Software</topic><topic>Strain rate</topic><topic>Yield strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stewart, James A.</creatorcontrib><creatorcontrib>Olles, Joseph D.</creatorcontrib><creatorcontrib>Wood, Mitchell A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stewart, James A.</au><au>Olles, Joseph D.</au><au>Wood, Mitchell A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidating size effects on the yield strength of single-crystal Cu via the Richtmyer–Meshkov instability</atitle><jtitle>Journal of applied physics</jtitle><date>2022-03-21</date><risdate>2022</risdate><volume>131</volume><issue>11</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Capturing the dynamic response of a material under high strain-rate deformation often demands challenging and time consuming experimental effort. While shock hydrodynamic simulation methods can aid in this area, a priori characterizations of the material strength under shock loading and spall failure are needed in order to parameterize constitutive models needed for these computational tools. Moreover, parameterizations of strain-rate-dependent strength models are needed to capture the full suite of Richtmyer–Meshkov instability (RMI) behavior of shock compressed metals, creating an unrealistic demand for these training data solely on experiments. Herein, we sweep a large range of geometric, crystallographic, and shock conditions within molecular dynamics (MD) simulations and demonstrate the breadth of RMI in Cu that can be captured from the atomic scale. Yield strength measurements from jetted and arrested material from a sinusoidal surface perturbation were quantified as
Y
RMI
=
0.787
±
0.374 GPa, higher than strain-rate-independent models used in experimentally matched hydrodynamic simulations. Defect-free, single-crystal Cu samples used in MD will overestimate
Y
RMI, but the drastic scale difference between experiment and MD is highlighted by high confidence neighborhood clustering predictions of RMI characterizations, yielding incorrect classifications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0082495</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4587-1304</orcidid><orcidid>https://orcid.org/0000-0001-5878-4096</orcidid><orcidid>https://orcid.org/0000000158784096</orcidid><orcidid>https://orcid.org/0000000345871304</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2022-03, Vol.131 (11) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0082495 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Clustering Constitutive models Crystal defects Crystallography Dynamic response Dynamic stability Mathematical models Molecular dynamics Perturbation Richtmeyer-Meshkov instability Shock loading Simulation Single crystals Size effects Software Strain rate Yield strength Yield stress |
title | Elucidating size effects on the yield strength of single-crystal Cu via the Richtmyer–Meshkov instability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A50%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidating%20size%20effects%20on%20the%20yield%20strength%20of%20single-crystal%20Cu%20via%20the%20Richtmyer%E2%80%93Meshkov%20instability&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Stewart,%20James%20A.&rft.date=2022-03-21&rft.volume=131&rft.issue=11&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0082495&rft_dat=%3Cproquest_scita%3E2639829383%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639829383&rft_id=info:pmid/&rfr_iscdi=true |