Natural biomaterial honey-based resistive switching device for artificial synapse in neuromorphic systems

Resistive switching is a promising technology for artificial synapses, the most critical component and building block of a neural network for brain-inspired neuromorphic computing. The artificial synapse is capable of emulating a signal process and memory functions of biological synapses. The artifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2022-02, Vol.120 (8)
Hauptverfasser: Sueoka, Brandon, Cheong, Kuan Yew, Zhao, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Applied physics letters
container_volume 120
creator Sueoka, Brandon
Cheong, Kuan Yew
Zhao, Feng
description Resistive switching is a promising technology for artificial synapses, the most critical component and building block of a neural network for brain-inspired neuromorphic computing. The artificial synapse is capable of emulating a signal process and memory functions of biological synapses. The artificial synapse fabricated by natural bioorganic materials is essential for developing soft, flexible, and biocompatible electronics and sustainable, biodegradable, and environmentally friendly neuromorphic systems. In this work, a natural biomaterial—honey based resistive switching device—was demonstrated to emulate some important functionalities of biological synapses, including synaptic potentiation and depression, short-term and long-term memory, spatial summation, and shunting inhibition. The results indicate the potential of honey based resistive switching for artificial synaptic devices in renewable neuromorphic systems and bioelectronics.
doi_str_mv 10.1063/5.0081704
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0081704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2631976769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-1122fa6867aa132d8019363db9734cb6394386e36bcd66e6d97e68a00a9bae553</originalsourceid><addsrcrecordid>eNqd0EtLAzEQAOAgCtbqwX8Q8KSwNdl0J5ujFF9Q9KLnkM3O2pTuZk2ylf57t7Tg3dM8-GYGhpBrzmacgbgvZoyVXLL5CZlwJmUmOC9PyYQxJjJQBT8nFzGux7LIhZgQ92bSEMyGVs63JmFwY77yHe6yykSsacDoYnJbpPHHJbty3Retcess0sYHakJyjbP7qbjrTB-Ruo52OATf-tCvnB37MWEbL8lZYzYRr45xSj6fHj8WL9ny_fl18bDMrIA8ZZzneWOgBGkMF3ldMq4EiLpSUsxtBULNRQkooLI1AEKtJEJpGDOqMlgUYkpuDnv74L8HjEmv_RC68aTOQXAlQYIa1e1B2eBjDNjoPrjWhJ3mTO8_qQt9_ORo7w42WpdMcr77H9768Ad1XzfiF-YcgwU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2631976769</pqid></control><display><type>article</type><title>Natural biomaterial honey-based resistive switching device for artificial synapse in neuromorphic systems</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Sueoka, Brandon ; Cheong, Kuan Yew ; Zhao, Feng</creator><creatorcontrib>Sueoka, Brandon ; Cheong, Kuan Yew ; Zhao, Feng</creatorcontrib><description>Resistive switching is a promising technology for artificial synapses, the most critical component and building block of a neural network for brain-inspired neuromorphic computing. The artificial synapse is capable of emulating a signal process and memory functions of biological synapses. The artificial synapse fabricated by natural bioorganic materials is essential for developing soft, flexible, and biocompatible electronics and sustainable, biodegradable, and environmentally friendly neuromorphic systems. In this work, a natural biomaterial—honey based resistive switching device—was demonstrated to emulate some important functionalities of biological synapses, including synaptic potentiation and depression, short-term and long-term memory, spatial summation, and shunting inhibition. The results indicate the potential of honey based resistive switching for artificial synaptic devices in renewable neuromorphic systems and bioelectronics.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0081704</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Biocompatibility ; Biodegradability ; Biomedical materials ; Critical components ; Neural networks ; Neuromorphic computing ; Signal processing ; Switching ; Synapses</subject><ispartof>Applied physics letters, 2022-02, Vol.120 (8)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-1122fa6867aa132d8019363db9734cb6394386e36bcd66e6d97e68a00a9bae553</citedby><cites>FETCH-LOGICAL-c362t-1122fa6867aa132d8019363db9734cb6394386e36bcd66e6d97e68a00a9bae553</cites><orcidid>0000-0001-9350-6497 ; 0000-0001-8049-0297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0081704$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Sueoka, Brandon</creatorcontrib><creatorcontrib>Cheong, Kuan Yew</creatorcontrib><creatorcontrib>Zhao, Feng</creatorcontrib><title>Natural biomaterial honey-based resistive switching device for artificial synapse in neuromorphic systems</title><title>Applied physics letters</title><description>Resistive switching is a promising technology for artificial synapses, the most critical component and building block of a neural network for brain-inspired neuromorphic computing. The artificial synapse is capable of emulating a signal process and memory functions of biological synapses. The artificial synapse fabricated by natural bioorganic materials is essential for developing soft, flexible, and biocompatible electronics and sustainable, biodegradable, and environmentally friendly neuromorphic systems. In this work, a natural biomaterial—honey based resistive switching device—was demonstrated to emulate some important functionalities of biological synapses, including synaptic potentiation and depression, short-term and long-term memory, spatial summation, and shunting inhibition. The results indicate the potential of honey based resistive switching for artificial synaptic devices in renewable neuromorphic systems and bioelectronics.</description><subject>Applied physics</subject><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Biomedical materials</subject><subject>Critical components</subject><subject>Neural networks</subject><subject>Neuromorphic computing</subject><subject>Signal processing</subject><subject>Switching</subject><subject>Synapses</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqd0EtLAzEQAOAgCtbqwX8Q8KSwNdl0J5ujFF9Q9KLnkM3O2pTuZk2ylf57t7Tg3dM8-GYGhpBrzmacgbgvZoyVXLL5CZlwJmUmOC9PyYQxJjJQBT8nFzGux7LIhZgQ92bSEMyGVs63JmFwY77yHe6yykSsacDoYnJbpPHHJbty3Retcess0sYHakJyjbP7qbjrTB-Ruo52OATf-tCvnB37MWEbL8lZYzYRr45xSj6fHj8WL9ny_fl18bDMrIA8ZZzneWOgBGkMF3ldMq4EiLpSUsxtBULNRQkooLI1AEKtJEJpGDOqMlgUYkpuDnv74L8HjEmv_RC68aTOQXAlQYIa1e1B2eBjDNjoPrjWhJ3mTO8_qQt9_ORo7w42WpdMcr77H9768Ad1XzfiF-YcgwU</recordid><startdate>20220221</startdate><enddate>20220221</enddate><creator>Sueoka, Brandon</creator><creator>Cheong, Kuan Yew</creator><creator>Zhao, Feng</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9350-6497</orcidid><orcidid>https://orcid.org/0000-0001-8049-0297</orcidid></search><sort><creationdate>20220221</creationdate><title>Natural biomaterial honey-based resistive switching device for artificial synapse in neuromorphic systems</title><author>Sueoka, Brandon ; Cheong, Kuan Yew ; Zhao, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-1122fa6867aa132d8019363db9734cb6394386e36bcd66e6d97e68a00a9bae553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Biomedical materials</topic><topic>Critical components</topic><topic>Neural networks</topic><topic>Neuromorphic computing</topic><topic>Signal processing</topic><topic>Switching</topic><topic>Synapses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sueoka, Brandon</creatorcontrib><creatorcontrib>Cheong, Kuan Yew</creatorcontrib><creatorcontrib>Zhao, Feng</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sueoka, Brandon</au><au>Cheong, Kuan Yew</au><au>Zhao, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Natural biomaterial honey-based resistive switching device for artificial synapse in neuromorphic systems</atitle><jtitle>Applied physics letters</jtitle><date>2022-02-21</date><risdate>2022</risdate><volume>120</volume><issue>8</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Resistive switching is a promising technology for artificial synapses, the most critical component and building block of a neural network for brain-inspired neuromorphic computing. The artificial synapse is capable of emulating a signal process and memory functions of biological synapses. The artificial synapse fabricated by natural bioorganic materials is essential for developing soft, flexible, and biocompatible electronics and sustainable, biodegradable, and environmentally friendly neuromorphic systems. In this work, a natural biomaterial—honey based resistive switching device—was demonstrated to emulate some important functionalities of biological synapses, including synaptic potentiation and depression, short-term and long-term memory, spatial summation, and shunting inhibition. The results indicate the potential of honey based resistive switching for artificial synaptic devices in renewable neuromorphic systems and bioelectronics.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0081704</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9350-6497</orcidid><orcidid>https://orcid.org/0000-0001-8049-0297</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2022-02, Vol.120 (8)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_5_0081704
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Biocompatibility
Biodegradability
Biomedical materials
Critical components
Neural networks
Neuromorphic computing
Signal processing
Switching
Synapses
title Natural biomaterial honey-based resistive switching device for artificial synapse in neuromorphic systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A58%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Natural%20biomaterial%20honey-based%20resistive%20switching%20device%20for%20artificial%20synapse%20in%20neuromorphic%20systems&rft.jtitle=Applied%20physics%20letters&rft.au=Sueoka,%20Brandon&rft.date=2022-02-21&rft.volume=120&rft.issue=8&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0081704&rft_dat=%3Cproquest_scita%3E2631976769%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2631976769&rft_id=info:pmid/&rfr_iscdi=true