Nanoscale imaging of dopant incorporation in n-type and p-type GaN nanowires by scanning spreading resistance microscopy
The realization of practical semiconductor nanowire optoelectronic devices requires controlling their electrical transport properties, which are affected by their large surface/volume ratio value and potentially inhomogeneous electrical dopant distribution. In this article, the local carrier density...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2022-02, Vol.131 (7) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 131 |
creator | Aybeke, Ece N. Siladie, Alexandra-Madalina Vermeersch, Rémy Robin, Eric Synhaivskyi, Oleksandr Gayral, Bruno Pernot, Julien Brémond, Georges Daudin, Bruno |
description | The realization of practical semiconductor nanowire optoelectronic devices requires controlling their electrical transport properties, which are affected by their large surface/volume ratio value and potentially inhomogeneous electrical dopant distribution. In this article, the local carrier density in Si-doped and Mg-doped GaN nanowires grown catalyst-free by molecular beam epitaxy was quantitatively measured using scanning spreading resistance microscopy. A conductive shell surrounding a more resistive core was observed in Mg-doped, p-type GaN nanowires, balancing the formation of a depleted layer associated with sidewall surface states. The formation of this conductive layer is assigned to the peripheral accumulation of Mg dopants up to values in the 1020 /cm3 range, as determined by quantitative energy dispersive x ray spectroscopy measurements. By contrast, Si-doped n-type GaN nanowires exhibit a resistive shell, consistent with the formation of a depleted layer, and a conductive core exhibiting a decreasing resistivity for increasing Si doping level. |
doi_str_mv | 10.1063/5.0080713 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0080713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628879948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-9ec1d83e7fbc5335fd51036fe29b4459d1b29f9792752de8018d0165b7d099cb3</originalsourceid><addsrcrecordid>eNqdkctOBCEQRYnRxPGx8A9IXGnSWjRDA0tjfCUT3eia0EArZgSE9jF_L-0Y3buigJNTXAqhAwInBDp6yk4ABHBCN9CMgJANZww20QygJY2QXG6jnVKeAQgRVM7Q560OsRi9dNi_6EcfHnEcsI1JhxH7YGJOMevRx1B3ODTjKjmsg8VpXV7pWxyq4sNnV3C_wtUVwqQpKTttp6re-DLqYBx-8SbXdjGt9tDWoJfF7f-su-jh8uL-_LpZ3F3dnJ8tGkNZNzbSGWIFdXzoDaOUDZYRoN3gWtnP50xa0rdyqLlazlrrBBBhgXSs5xakND3dRUdr75NeqpRryLxSUXt1fbZQ0xlQPpccxDup7OGaTTm-vrkyquf4lkN9nmq7Vggu5Vz8GacoJbvhV0tATUNQTP0MobLHa7YYP35_4__g95j_QJXsQL8A0syVpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628879948</pqid></control><display><type>article</type><title>Nanoscale imaging of dopant incorporation in n-type and p-type GaN nanowires by scanning spreading resistance microscopy</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Aybeke, Ece N. ; Siladie, Alexandra-Madalina ; Vermeersch, Rémy ; Robin, Eric ; Synhaivskyi, Oleksandr ; Gayral, Bruno ; Pernot, Julien ; Brémond, Georges ; Daudin, Bruno</creator><creatorcontrib>Aybeke, Ece N. ; Siladie, Alexandra-Madalina ; Vermeersch, Rémy ; Robin, Eric ; Synhaivskyi, Oleksandr ; Gayral, Bruno ; Pernot, Julien ; Brémond, Georges ; Daudin, Bruno</creatorcontrib><description>The realization of practical semiconductor nanowire optoelectronic devices requires controlling their electrical transport properties, which are affected by their large surface/volume ratio value and potentially inhomogeneous electrical dopant distribution. In this article, the local carrier density in Si-doped and Mg-doped GaN nanowires grown catalyst-free by molecular beam epitaxy was quantitatively measured using scanning spreading resistance microscopy. A conductive shell surrounding a more resistive core was observed in Mg-doped, p-type GaN nanowires, balancing the formation of a depleted layer associated with sidewall surface states. The formation of this conductive layer is assigned to the peripheral accumulation of Mg dopants up to values in the 1020 /cm3 range, as determined by quantitative energy dispersive x ray spectroscopy measurements. By contrast, Si-doped n-type GaN nanowires exhibit a resistive shell, consistent with the formation of a depleted layer, and a conductive core exhibiting a decreasing resistivity for increasing Si doping level.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0080713</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Carrier density ; Condensed Matter ; Depletion ; Dopants ; Epitaxial growth ; Gallium nitrides ; Magnesium ; Materials Science ; Microscopy ; Molecular beam epitaxy ; Nanowires ; Optoelectronic devices ; Physics ; Silicon ; Transport properties</subject><ispartof>Journal of applied physics, 2022-02, Vol.131 (7)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c356t-9ec1d83e7fbc5335fd51036fe29b4459d1b29f9792752de8018d0165b7d099cb3</cites><orcidid>0000-0002-3724-1380 ; 0000-0002-0679-7175 ; 0000-0002-8267-5719 ; 0000-0001-6146-072X ; 0000-0002-6967-237X ; 0000-0001-8203-5095 ; 0000-0001-5208-462X ; 0000-0003-2857-237X ; 0000-0002-5596-2640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0080713$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03749708$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aybeke, Ece N.</creatorcontrib><creatorcontrib>Siladie, Alexandra-Madalina</creatorcontrib><creatorcontrib>Vermeersch, Rémy</creatorcontrib><creatorcontrib>Robin, Eric</creatorcontrib><creatorcontrib>Synhaivskyi, Oleksandr</creatorcontrib><creatorcontrib>Gayral, Bruno</creatorcontrib><creatorcontrib>Pernot, Julien</creatorcontrib><creatorcontrib>Brémond, Georges</creatorcontrib><creatorcontrib>Daudin, Bruno</creatorcontrib><title>Nanoscale imaging of dopant incorporation in n-type and p-type GaN nanowires by scanning spreading resistance microscopy</title><title>Journal of applied physics</title><description>The realization of practical semiconductor nanowire optoelectronic devices requires controlling their electrical transport properties, which are affected by their large surface/volume ratio value and potentially inhomogeneous electrical dopant distribution. In this article, the local carrier density in Si-doped and Mg-doped GaN nanowires grown catalyst-free by molecular beam epitaxy was quantitatively measured using scanning spreading resistance microscopy. A conductive shell surrounding a more resistive core was observed in Mg-doped, p-type GaN nanowires, balancing the formation of a depleted layer associated with sidewall surface states. The formation of this conductive layer is assigned to the peripheral accumulation of Mg dopants up to values in the 1020 /cm3 range, as determined by quantitative energy dispersive x ray spectroscopy measurements. By contrast, Si-doped n-type GaN nanowires exhibit a resistive shell, consistent with the formation of a depleted layer, and a conductive core exhibiting a decreasing resistivity for increasing Si doping level.</description><subject>Applied physics</subject><subject>Carrier density</subject><subject>Condensed Matter</subject><subject>Depletion</subject><subject>Dopants</subject><subject>Epitaxial growth</subject><subject>Gallium nitrides</subject><subject>Magnesium</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Molecular beam epitaxy</subject><subject>Nanowires</subject><subject>Optoelectronic devices</subject><subject>Physics</subject><subject>Silicon</subject><subject>Transport properties</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqdkctOBCEQRYnRxPGx8A9IXGnSWjRDA0tjfCUT3eia0EArZgSE9jF_L-0Y3buigJNTXAqhAwInBDp6yk4ABHBCN9CMgJANZww20QygJY2QXG6jnVKeAQgRVM7Q560OsRi9dNi_6EcfHnEcsI1JhxH7YGJOMevRx1B3ODTjKjmsg8VpXV7pWxyq4sNnV3C_wtUVwqQpKTttp6re-DLqYBx-8SbXdjGt9tDWoJfF7f-su-jh8uL-_LpZ3F3dnJ8tGkNZNzbSGWIFdXzoDaOUDZYRoN3gWtnP50xa0rdyqLlazlrrBBBhgXSs5xakND3dRUdr75NeqpRryLxSUXt1fbZQ0xlQPpccxDup7OGaTTm-vrkyquf4lkN9nmq7Vggu5Vz8GacoJbvhV0tATUNQTP0MobLHa7YYP35_4__g95j_QJXsQL8A0syVpg</recordid><startdate>20220221</startdate><enddate>20220221</enddate><creator>Aybeke, Ece N.</creator><creator>Siladie, Alexandra-Madalina</creator><creator>Vermeersch, Rémy</creator><creator>Robin, Eric</creator><creator>Synhaivskyi, Oleksandr</creator><creator>Gayral, Bruno</creator><creator>Pernot, Julien</creator><creator>Brémond, Georges</creator><creator>Daudin, Bruno</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3724-1380</orcidid><orcidid>https://orcid.org/0000-0002-0679-7175</orcidid><orcidid>https://orcid.org/0000-0002-8267-5719</orcidid><orcidid>https://orcid.org/0000-0001-6146-072X</orcidid><orcidid>https://orcid.org/0000-0002-6967-237X</orcidid><orcidid>https://orcid.org/0000-0001-8203-5095</orcidid><orcidid>https://orcid.org/0000-0001-5208-462X</orcidid><orcidid>https://orcid.org/0000-0003-2857-237X</orcidid><orcidid>https://orcid.org/0000-0002-5596-2640</orcidid></search><sort><creationdate>20220221</creationdate><title>Nanoscale imaging of dopant incorporation in n-type and p-type GaN nanowires by scanning spreading resistance microscopy</title><author>Aybeke, Ece N. ; Siladie, Alexandra-Madalina ; Vermeersch, Rémy ; Robin, Eric ; Synhaivskyi, Oleksandr ; Gayral, Bruno ; Pernot, Julien ; Brémond, Georges ; Daudin, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-9ec1d83e7fbc5335fd51036fe29b4459d1b29f9792752de8018d0165b7d099cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Carrier density</topic><topic>Condensed Matter</topic><topic>Depletion</topic><topic>Dopants</topic><topic>Epitaxial growth</topic><topic>Gallium nitrides</topic><topic>Magnesium</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Molecular beam epitaxy</topic><topic>Nanowires</topic><topic>Optoelectronic devices</topic><topic>Physics</topic><topic>Silicon</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aybeke, Ece N.</creatorcontrib><creatorcontrib>Siladie, Alexandra-Madalina</creatorcontrib><creatorcontrib>Vermeersch, Rémy</creatorcontrib><creatorcontrib>Robin, Eric</creatorcontrib><creatorcontrib>Synhaivskyi, Oleksandr</creatorcontrib><creatorcontrib>Gayral, Bruno</creatorcontrib><creatorcontrib>Pernot, Julien</creatorcontrib><creatorcontrib>Brémond, Georges</creatorcontrib><creatorcontrib>Daudin, Bruno</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aybeke, Ece N.</au><au>Siladie, Alexandra-Madalina</au><au>Vermeersch, Rémy</au><au>Robin, Eric</au><au>Synhaivskyi, Oleksandr</au><au>Gayral, Bruno</au><au>Pernot, Julien</au><au>Brémond, Georges</au><au>Daudin, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale imaging of dopant incorporation in n-type and p-type GaN nanowires by scanning spreading resistance microscopy</atitle><jtitle>Journal of applied physics</jtitle><date>2022-02-21</date><risdate>2022</risdate><volume>131</volume><issue>7</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The realization of practical semiconductor nanowire optoelectronic devices requires controlling their electrical transport properties, which are affected by their large surface/volume ratio value and potentially inhomogeneous electrical dopant distribution. In this article, the local carrier density in Si-doped and Mg-doped GaN nanowires grown catalyst-free by molecular beam epitaxy was quantitatively measured using scanning spreading resistance microscopy. A conductive shell surrounding a more resistive core was observed in Mg-doped, p-type GaN nanowires, balancing the formation of a depleted layer associated with sidewall surface states. The formation of this conductive layer is assigned to the peripheral accumulation of Mg dopants up to values in the 1020 /cm3 range, as determined by quantitative energy dispersive x ray spectroscopy measurements. By contrast, Si-doped n-type GaN nanowires exhibit a resistive shell, consistent with the formation of a depleted layer, and a conductive core exhibiting a decreasing resistivity for increasing Si doping level.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0080713</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3724-1380</orcidid><orcidid>https://orcid.org/0000-0002-0679-7175</orcidid><orcidid>https://orcid.org/0000-0002-8267-5719</orcidid><orcidid>https://orcid.org/0000-0001-6146-072X</orcidid><orcidid>https://orcid.org/0000-0002-6967-237X</orcidid><orcidid>https://orcid.org/0000-0001-8203-5095</orcidid><orcidid>https://orcid.org/0000-0001-5208-462X</orcidid><orcidid>https://orcid.org/0000-0003-2857-237X</orcidid><orcidid>https://orcid.org/0000-0002-5596-2640</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2022-02, Vol.131 (7) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0080713 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Carrier density Condensed Matter Depletion Dopants Epitaxial growth Gallium nitrides Magnesium Materials Science Microscopy Molecular beam epitaxy Nanowires Optoelectronic devices Physics Silicon Transport properties |
title | Nanoscale imaging of dopant incorporation in n-type and p-type GaN nanowires by scanning spreading resistance microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A31%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20imaging%20of%20dopant%20incorporation%20in%20n-type%20and%20p-type%20GaN%20nanowires%20by%20scanning%20spreading%20resistance%20microscopy&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Aybeke,%20Ece%20N.&rft.date=2022-02-21&rft.volume=131&rft.issue=7&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0080713&rft_dat=%3Cproquest_scita%3E2628879948%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628879948&rft_id=info:pmid/&rfr_iscdi=true |