Nanoscale imaging of dopant incorporation in n-type and p-type GaN nanowires by scanning spreading resistance microscopy

The realization of practical semiconductor nanowire optoelectronic devices requires controlling their electrical transport properties, which are affected by their large surface/volume ratio value and potentially inhomogeneous electrical dopant distribution. In this article, the local carrier density...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2022-02, Vol.131 (7)
Hauptverfasser: Aybeke, Ece N., Siladie, Alexandra-Madalina, Vermeersch, Rémy, Robin, Eric, Synhaivskyi, Oleksandr, Gayral, Bruno, Pernot, Julien, Brémond, Georges, Daudin, Bruno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Journal of applied physics
container_volume 131
creator Aybeke, Ece N.
Siladie, Alexandra-Madalina
Vermeersch, Rémy
Robin, Eric
Synhaivskyi, Oleksandr
Gayral, Bruno
Pernot, Julien
Brémond, Georges
Daudin, Bruno
description The realization of practical semiconductor nanowire optoelectronic devices requires controlling their electrical transport properties, which are affected by their large surface/volume ratio value and potentially inhomogeneous electrical dopant distribution. In this article, the local carrier density in Si-doped and Mg-doped GaN nanowires grown catalyst-free by molecular beam epitaxy was quantitatively measured using scanning spreading resistance microscopy. A conductive shell surrounding a more resistive core was observed in Mg-doped, p-type GaN nanowires, balancing the formation of a depleted layer associated with sidewall surface states. The formation of this conductive layer is assigned to the peripheral accumulation of Mg dopants up to values in the 1020 /cm3 range, as determined by quantitative energy dispersive x ray spectroscopy measurements. By contrast, Si-doped n-type GaN nanowires exhibit a resistive shell, consistent with the formation of a depleted layer, and a conductive core exhibiting a decreasing resistivity for increasing Si doping level.
doi_str_mv 10.1063/5.0080713
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0080713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628879948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-9ec1d83e7fbc5335fd51036fe29b4459d1b29f9792752de8018d0165b7d099cb3</originalsourceid><addsrcrecordid>eNqdkctOBCEQRYnRxPGx8A9IXGnSWjRDA0tjfCUT3eia0EArZgSE9jF_L-0Y3buigJNTXAqhAwInBDp6yk4ABHBCN9CMgJANZww20QygJY2QXG6jnVKeAQgRVM7Q560OsRi9dNi_6EcfHnEcsI1JhxH7YGJOMevRx1B3ODTjKjmsg8VpXV7pWxyq4sNnV3C_wtUVwqQpKTttp6re-DLqYBx-8SbXdjGt9tDWoJfF7f-su-jh8uL-_LpZ3F3dnJ8tGkNZNzbSGWIFdXzoDaOUDZYRoN3gWtnP50xa0rdyqLlazlrrBBBhgXSs5xakND3dRUdr75NeqpRryLxSUXt1fbZQ0xlQPpccxDup7OGaTTm-vrkyquf4lkN9nmq7Vggu5Vz8GacoJbvhV0tATUNQTP0MobLHa7YYP35_4__g95j_QJXsQL8A0syVpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628879948</pqid></control><display><type>article</type><title>Nanoscale imaging of dopant incorporation in n-type and p-type GaN nanowires by scanning spreading resistance microscopy</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Aybeke, Ece N. ; Siladie, Alexandra-Madalina ; Vermeersch, Rémy ; Robin, Eric ; Synhaivskyi, Oleksandr ; Gayral, Bruno ; Pernot, Julien ; Brémond, Georges ; Daudin, Bruno</creator><creatorcontrib>Aybeke, Ece N. ; Siladie, Alexandra-Madalina ; Vermeersch, Rémy ; Robin, Eric ; Synhaivskyi, Oleksandr ; Gayral, Bruno ; Pernot, Julien ; Brémond, Georges ; Daudin, Bruno</creatorcontrib><description>The realization of practical semiconductor nanowire optoelectronic devices requires controlling their electrical transport properties, which are affected by their large surface/volume ratio value and potentially inhomogeneous electrical dopant distribution. In this article, the local carrier density in Si-doped and Mg-doped GaN nanowires grown catalyst-free by molecular beam epitaxy was quantitatively measured using scanning spreading resistance microscopy. A conductive shell surrounding a more resistive core was observed in Mg-doped, p-type GaN nanowires, balancing the formation of a depleted layer associated with sidewall surface states. The formation of this conductive layer is assigned to the peripheral accumulation of Mg dopants up to values in the 1020 /cm3 range, as determined by quantitative energy dispersive x ray spectroscopy measurements. By contrast, Si-doped n-type GaN nanowires exhibit a resistive shell, consistent with the formation of a depleted layer, and a conductive core exhibiting a decreasing resistivity for increasing Si doping level.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0080713</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Carrier density ; Condensed Matter ; Depletion ; Dopants ; Epitaxial growth ; Gallium nitrides ; Magnesium ; Materials Science ; Microscopy ; Molecular beam epitaxy ; Nanowires ; Optoelectronic devices ; Physics ; Silicon ; Transport properties</subject><ispartof>Journal of applied physics, 2022-02, Vol.131 (7)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c356t-9ec1d83e7fbc5335fd51036fe29b4459d1b29f9792752de8018d0165b7d099cb3</cites><orcidid>0000-0002-3724-1380 ; 0000-0002-0679-7175 ; 0000-0002-8267-5719 ; 0000-0001-6146-072X ; 0000-0002-6967-237X ; 0000-0001-8203-5095 ; 0000-0001-5208-462X ; 0000-0003-2857-237X ; 0000-0002-5596-2640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0080713$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03749708$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aybeke, Ece N.</creatorcontrib><creatorcontrib>Siladie, Alexandra-Madalina</creatorcontrib><creatorcontrib>Vermeersch, Rémy</creatorcontrib><creatorcontrib>Robin, Eric</creatorcontrib><creatorcontrib>Synhaivskyi, Oleksandr</creatorcontrib><creatorcontrib>Gayral, Bruno</creatorcontrib><creatorcontrib>Pernot, Julien</creatorcontrib><creatorcontrib>Brémond, Georges</creatorcontrib><creatorcontrib>Daudin, Bruno</creatorcontrib><title>Nanoscale imaging of dopant incorporation in n-type and p-type GaN nanowires by scanning spreading resistance microscopy</title><title>Journal of applied physics</title><description>The realization of practical semiconductor nanowire optoelectronic devices requires controlling their electrical transport properties, which are affected by their large surface/volume ratio value and potentially inhomogeneous electrical dopant distribution. In this article, the local carrier density in Si-doped and Mg-doped GaN nanowires grown catalyst-free by molecular beam epitaxy was quantitatively measured using scanning spreading resistance microscopy. A conductive shell surrounding a more resistive core was observed in Mg-doped, p-type GaN nanowires, balancing the formation of a depleted layer associated with sidewall surface states. The formation of this conductive layer is assigned to the peripheral accumulation of Mg dopants up to values in the 1020 /cm3 range, as determined by quantitative energy dispersive x ray spectroscopy measurements. By contrast, Si-doped n-type GaN nanowires exhibit a resistive shell, consistent with the formation of a depleted layer, and a conductive core exhibiting a decreasing resistivity for increasing Si doping level.</description><subject>Applied physics</subject><subject>Carrier density</subject><subject>Condensed Matter</subject><subject>Depletion</subject><subject>Dopants</subject><subject>Epitaxial growth</subject><subject>Gallium nitrides</subject><subject>Magnesium</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Molecular beam epitaxy</subject><subject>Nanowires</subject><subject>Optoelectronic devices</subject><subject>Physics</subject><subject>Silicon</subject><subject>Transport properties</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqdkctOBCEQRYnRxPGx8A9IXGnSWjRDA0tjfCUT3eia0EArZgSE9jF_L-0Y3buigJNTXAqhAwInBDp6yk4ABHBCN9CMgJANZww20QygJY2QXG6jnVKeAQgRVM7Q560OsRi9dNi_6EcfHnEcsI1JhxH7YGJOMevRx1B3ODTjKjmsg8VpXV7pWxyq4sNnV3C_wtUVwqQpKTttp6re-DLqYBx-8SbXdjGt9tDWoJfF7f-su-jh8uL-_LpZ3F3dnJ8tGkNZNzbSGWIFdXzoDaOUDZYRoN3gWtnP50xa0rdyqLlazlrrBBBhgXSs5xakND3dRUdr75NeqpRryLxSUXt1fbZQ0xlQPpccxDup7OGaTTm-vrkyquf4lkN9nmq7Vggu5Vz8GacoJbvhV0tATUNQTP0MobLHa7YYP35_4__g95j_QJXsQL8A0syVpg</recordid><startdate>20220221</startdate><enddate>20220221</enddate><creator>Aybeke, Ece N.</creator><creator>Siladie, Alexandra-Madalina</creator><creator>Vermeersch, Rémy</creator><creator>Robin, Eric</creator><creator>Synhaivskyi, Oleksandr</creator><creator>Gayral, Bruno</creator><creator>Pernot, Julien</creator><creator>Brémond, Georges</creator><creator>Daudin, Bruno</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3724-1380</orcidid><orcidid>https://orcid.org/0000-0002-0679-7175</orcidid><orcidid>https://orcid.org/0000-0002-8267-5719</orcidid><orcidid>https://orcid.org/0000-0001-6146-072X</orcidid><orcidid>https://orcid.org/0000-0002-6967-237X</orcidid><orcidid>https://orcid.org/0000-0001-8203-5095</orcidid><orcidid>https://orcid.org/0000-0001-5208-462X</orcidid><orcidid>https://orcid.org/0000-0003-2857-237X</orcidid><orcidid>https://orcid.org/0000-0002-5596-2640</orcidid></search><sort><creationdate>20220221</creationdate><title>Nanoscale imaging of dopant incorporation in n-type and p-type GaN nanowires by scanning spreading resistance microscopy</title><author>Aybeke, Ece N. ; Siladie, Alexandra-Madalina ; Vermeersch, Rémy ; Robin, Eric ; Synhaivskyi, Oleksandr ; Gayral, Bruno ; Pernot, Julien ; Brémond, Georges ; Daudin, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-9ec1d83e7fbc5335fd51036fe29b4459d1b29f9792752de8018d0165b7d099cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Carrier density</topic><topic>Condensed Matter</topic><topic>Depletion</topic><topic>Dopants</topic><topic>Epitaxial growth</topic><topic>Gallium nitrides</topic><topic>Magnesium</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Molecular beam epitaxy</topic><topic>Nanowires</topic><topic>Optoelectronic devices</topic><topic>Physics</topic><topic>Silicon</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aybeke, Ece N.</creatorcontrib><creatorcontrib>Siladie, Alexandra-Madalina</creatorcontrib><creatorcontrib>Vermeersch, Rémy</creatorcontrib><creatorcontrib>Robin, Eric</creatorcontrib><creatorcontrib>Synhaivskyi, Oleksandr</creatorcontrib><creatorcontrib>Gayral, Bruno</creatorcontrib><creatorcontrib>Pernot, Julien</creatorcontrib><creatorcontrib>Brémond, Georges</creatorcontrib><creatorcontrib>Daudin, Bruno</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aybeke, Ece N.</au><au>Siladie, Alexandra-Madalina</au><au>Vermeersch, Rémy</au><au>Robin, Eric</au><au>Synhaivskyi, Oleksandr</au><au>Gayral, Bruno</au><au>Pernot, Julien</au><au>Brémond, Georges</au><au>Daudin, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale imaging of dopant incorporation in n-type and p-type GaN nanowires by scanning spreading resistance microscopy</atitle><jtitle>Journal of applied physics</jtitle><date>2022-02-21</date><risdate>2022</risdate><volume>131</volume><issue>7</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The realization of practical semiconductor nanowire optoelectronic devices requires controlling their electrical transport properties, which are affected by their large surface/volume ratio value and potentially inhomogeneous electrical dopant distribution. In this article, the local carrier density in Si-doped and Mg-doped GaN nanowires grown catalyst-free by molecular beam epitaxy was quantitatively measured using scanning spreading resistance microscopy. A conductive shell surrounding a more resistive core was observed in Mg-doped, p-type GaN nanowires, balancing the formation of a depleted layer associated with sidewall surface states. The formation of this conductive layer is assigned to the peripheral accumulation of Mg dopants up to values in the 1020 /cm3 range, as determined by quantitative energy dispersive x ray spectroscopy measurements. By contrast, Si-doped n-type GaN nanowires exhibit a resistive shell, consistent with the formation of a depleted layer, and a conductive core exhibiting a decreasing resistivity for increasing Si doping level.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0080713</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3724-1380</orcidid><orcidid>https://orcid.org/0000-0002-0679-7175</orcidid><orcidid>https://orcid.org/0000-0002-8267-5719</orcidid><orcidid>https://orcid.org/0000-0001-6146-072X</orcidid><orcidid>https://orcid.org/0000-0002-6967-237X</orcidid><orcidid>https://orcid.org/0000-0001-8203-5095</orcidid><orcidid>https://orcid.org/0000-0001-5208-462X</orcidid><orcidid>https://orcid.org/0000-0003-2857-237X</orcidid><orcidid>https://orcid.org/0000-0002-5596-2640</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2022-02, Vol.131 (7)
issn 0021-8979
1089-7550
language eng
recordid cdi_scitation_primary_10_1063_5_0080713
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Carrier density
Condensed Matter
Depletion
Dopants
Epitaxial growth
Gallium nitrides
Magnesium
Materials Science
Microscopy
Molecular beam epitaxy
Nanowires
Optoelectronic devices
Physics
Silicon
Transport properties
title Nanoscale imaging of dopant incorporation in n-type and p-type GaN nanowires by scanning spreading resistance microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A31%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20imaging%20of%20dopant%20incorporation%20in%20n-type%20and%20p-type%20GaN%20nanowires%20by%20scanning%20spreading%20resistance%20microscopy&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Aybeke,%20Ece%20N.&rft.date=2022-02-21&rft.volume=131&rft.issue=7&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0080713&rft_dat=%3Cproquest_scita%3E2628879948%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628879948&rft_id=info:pmid/&rfr_iscdi=true