A high-speed variable-temperature ultrahigh vacuum scanning tunneling microscope with spiral scan capabilities

We present the design and development of a variable-temperature high-speed scanning tunneling microscope (STM). The setup consists of a two-chamber ultra-high vacuum system, including a preparation and a main chamber. The preparation chamber is equipped with standard preparation tools for sample cle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2022-05, Vol.93 (5), p.053704-053704
Hauptverfasser: Yang, Zechao, Gura, Leonard, Kalaß, Florian, Marschalik, Patrik, Brinker, Matthias, Kirstaedter, William, Hartmann, Jens, Thielsch, Gero, Junkes, Heinz, Heyde, Markus, Freund, Hans-Joachim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 053704
container_issue 5
container_start_page 053704
container_title Review of scientific instruments
container_volume 93
creator Yang, Zechao
Gura, Leonard
Kalaß, Florian
Marschalik, Patrik
Brinker, Matthias
Kirstaedter, William
Hartmann, Jens
Thielsch, Gero
Junkes, Heinz
Heyde, Markus
Freund, Hans-Joachim
description We present the design and development of a variable-temperature high-speed scanning tunneling microscope (STM). The setup consists of a two-chamber ultra-high vacuum system, including a preparation and a main chamber. The preparation chamber is equipped with standard preparation tools for sample cleaning and film growth. The main chamber hosts the STM that is located within a continuous flow cryostat for counter-cooling during high-temperature measurements. The microscope body is compact, rigid, and highly symmetric to ensure vibrational stability and low thermal drift. We designed a hybrid scanner made of two independent tube piezos for slow and fast scanning, respectively. A commercial STM controller is used for slow scanning, while a high-speed Versa Module Eurocard bus system controls fast scanning. Here, we implement non-conventional spiral geometries for high-speed scanning, which consist of smooth sine and cosine signals created by an arbitrary waveform generator. The tip scans in a quasi-constant height mode, where the logarithm of the tunneling current signal can be regarded as roughly proportional to the surface topography. Scan control and data acquisition have been programmed in the experimental physics and industrial control system framework. With the spiral scans, we atomically resolved diffusion processes of oxygen atoms on the Ru(0001) surface and achieved a time resolution of 8.3 ms per frame at different temperatures. Variable-temperature measurements reveal an influence of the temperature on the oxygen diffusion rate.
doi_str_mv 10.1063/5.0079868
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0079868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2662120621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-ca6886b8ebd872236ecf02472c08d78728c17351b97f1572f3fb59458c681a3c3</originalsourceid><addsrcrecordid>eNp90ctq3DAUBmARGpJp2kVeoBi6SQtOdbEuXg5DL4GBbJK1keXjjIItu7pM6NtHk5kmEEi0kIT08XOkg9A5wZcEC_aDX2IsayXUEVoQrOpSCso-oAXGrCqFrNQp-hjCPc6DE3KCThkXVS05WyC3LDb2blOGGaArttpb3Q5QRhhn8DomD0Uaotc7lK9NSmMRjHbOursiJudg2O1Ga_wUzDRD8WDjpgiz9Xp4koXRs27tYKOF8Akd93oI8PmwnqHbXz9vVn_K9fXvq9VyXZqKqFgaLZQSrYK2U5JSJsD0mFaSGqw6mY-UIZJx0tayJ1zSnvUtryuujFBEM8PO0MU-d_bT3wQhNqMNBoZBO5hSaKiQVGImRJXp11f0fkre5eqyEpRQnKesvu3V7p3BQ9_M3o7a_2sIbnZNaHhzaEK2Xw6JqR2he5b_fz2D73sQjI062sm9m_Ym3k7-BTZz17NHaFmeBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2662120621</pqid></control><display><type>article</type><title>A high-speed variable-temperature ultrahigh vacuum scanning tunneling microscope with spiral scan capabilities</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><creator>Yang, Zechao ; Gura, Leonard ; Kalaß, Florian ; Marschalik, Patrik ; Brinker, Matthias ; Kirstaedter, William ; Hartmann, Jens ; Thielsch, Gero ; Junkes, Heinz ; Heyde, Markus ; Freund, Hans-Joachim</creator><creatorcontrib>Yang, Zechao ; Gura, Leonard ; Kalaß, Florian ; Marschalik, Patrik ; Brinker, Matthias ; Kirstaedter, William ; Hartmann, Jens ; Thielsch, Gero ; Junkes, Heinz ; Heyde, Markus ; Freund, Hans-Joachim</creatorcontrib><description>We present the design and development of a variable-temperature high-speed scanning tunneling microscope (STM). The setup consists of a two-chamber ultra-high vacuum system, including a preparation and a main chamber. The preparation chamber is equipped with standard preparation tools for sample cleaning and film growth. The main chamber hosts the STM that is located within a continuous flow cryostat for counter-cooling during high-temperature measurements. The microscope body is compact, rigid, and highly symmetric to ensure vibrational stability and low thermal drift. We designed a hybrid scanner made of two independent tube piezos for slow and fast scanning, respectively. A commercial STM controller is used for slow scanning, while a high-speed Versa Module Eurocard bus system controls fast scanning. Here, we implement non-conventional spiral geometries for high-speed scanning, which consist of smooth sine and cosine signals created by an arbitrary waveform generator. The tip scans in a quasi-constant height mode, where the logarithm of the tunneling current signal can be regarded as roughly proportional to the surface topography. Scan control and data acquisition have been programmed in the experimental physics and industrial control system framework. With the spiral scans, we atomically resolved diffusion processes of oxygen atoms on the Ru(0001) surface and achieved a time resolution of 8.3 ms per frame at different temperatures. Variable-temperature measurements reveal an influence of the temperature on the oxygen diffusion rate.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/5.0079868</identifier><identifier>PMID: 35649753</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Chambers ; Continuous flow ; Control systems ; Data acquisition ; Diffusion rate ; Film growth ; High speed ; High temperature ; High vacuum ; Industrial electronics ; Oxygen atoms ; Scanning tunneling microscopy ; Scientific apparatus &amp; instruments ; Temperature ; Trigonometric functions ; Ultrahigh vacuum ; Waveform generators ; Waveforms</subject><ispartof>Review of scientific instruments, 2022-05, Vol.93 (5), p.053704-053704</ispartof><rights>Author(s)</rights><rights>2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-ca6886b8ebd872236ecf02472c08d78728c17351b97f1572f3fb59458c681a3c3</citedby><cites>FETCH-LOGICAL-c418t-ca6886b8ebd872236ecf02472c08d78728c17351b97f1572f3fb59458c681a3c3</cites><orcidid>0000-0002-0218-4873 ; 0000-0001-5188-852X ; 0000-0002-7049-0485 ; 0000-0002-3429-6167 ; 0000-0002-0015-235X ; 0000-0001-6498-705X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/5.0079868$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35649753$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Zechao</creatorcontrib><creatorcontrib>Gura, Leonard</creatorcontrib><creatorcontrib>Kalaß, Florian</creatorcontrib><creatorcontrib>Marschalik, Patrik</creatorcontrib><creatorcontrib>Brinker, Matthias</creatorcontrib><creatorcontrib>Kirstaedter, William</creatorcontrib><creatorcontrib>Hartmann, Jens</creatorcontrib><creatorcontrib>Thielsch, Gero</creatorcontrib><creatorcontrib>Junkes, Heinz</creatorcontrib><creatorcontrib>Heyde, Markus</creatorcontrib><creatorcontrib>Freund, Hans-Joachim</creatorcontrib><title>A high-speed variable-temperature ultrahigh vacuum scanning tunneling microscope with spiral scan capabilities</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>We present the design and development of a variable-temperature high-speed scanning tunneling microscope (STM). The setup consists of a two-chamber ultra-high vacuum system, including a preparation and a main chamber. The preparation chamber is equipped with standard preparation tools for sample cleaning and film growth. The main chamber hosts the STM that is located within a continuous flow cryostat for counter-cooling during high-temperature measurements. The microscope body is compact, rigid, and highly symmetric to ensure vibrational stability and low thermal drift. We designed a hybrid scanner made of two independent tube piezos for slow and fast scanning, respectively. A commercial STM controller is used for slow scanning, while a high-speed Versa Module Eurocard bus system controls fast scanning. Here, we implement non-conventional spiral geometries for high-speed scanning, which consist of smooth sine and cosine signals created by an arbitrary waveform generator. The tip scans in a quasi-constant height mode, where the logarithm of the tunneling current signal can be regarded as roughly proportional to the surface topography. Scan control and data acquisition have been programmed in the experimental physics and industrial control system framework. With the spiral scans, we atomically resolved diffusion processes of oxygen atoms on the Ru(0001) surface and achieved a time resolution of 8.3 ms per frame at different temperatures. Variable-temperature measurements reveal an influence of the temperature on the oxygen diffusion rate.</description><subject>Chambers</subject><subject>Continuous flow</subject><subject>Control systems</subject><subject>Data acquisition</subject><subject>Diffusion rate</subject><subject>Film growth</subject><subject>High speed</subject><subject>High temperature</subject><subject>High vacuum</subject><subject>Industrial electronics</subject><subject>Oxygen atoms</subject><subject>Scanning tunneling microscopy</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Temperature</subject><subject>Trigonometric functions</subject><subject>Ultrahigh vacuum</subject><subject>Waveform generators</subject><subject>Waveforms</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90ctq3DAUBmARGpJp2kVeoBi6SQtOdbEuXg5DL4GBbJK1keXjjIItu7pM6NtHk5kmEEi0kIT08XOkg9A5wZcEC_aDX2IsayXUEVoQrOpSCso-oAXGrCqFrNQp-hjCPc6DE3KCThkXVS05WyC3LDb2blOGGaArttpb3Q5QRhhn8DomD0Uaotc7lK9NSmMRjHbOursiJudg2O1Ga_wUzDRD8WDjpgiz9Xp4koXRs27tYKOF8Akd93oI8PmwnqHbXz9vVn_K9fXvq9VyXZqKqFgaLZQSrYK2U5JSJsD0mFaSGqw6mY-UIZJx0tayJ1zSnvUtryuujFBEM8PO0MU-d_bT3wQhNqMNBoZBO5hSaKiQVGImRJXp11f0fkre5eqyEpRQnKesvu3V7p3BQ9_M3o7a_2sIbnZNaHhzaEK2Xw6JqR2he5b_fz2D73sQjI062sm9m_Ym3k7-BTZz17NHaFmeBw</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Yang, Zechao</creator><creator>Gura, Leonard</creator><creator>Kalaß, Florian</creator><creator>Marschalik, Patrik</creator><creator>Brinker, Matthias</creator><creator>Kirstaedter, William</creator><creator>Hartmann, Jens</creator><creator>Thielsch, Gero</creator><creator>Junkes, Heinz</creator><creator>Heyde, Markus</creator><creator>Freund, Hans-Joachim</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0218-4873</orcidid><orcidid>https://orcid.org/0000-0001-5188-852X</orcidid><orcidid>https://orcid.org/0000-0002-7049-0485</orcidid><orcidid>https://orcid.org/0000-0002-3429-6167</orcidid><orcidid>https://orcid.org/0000-0002-0015-235X</orcidid><orcidid>https://orcid.org/0000-0001-6498-705X</orcidid></search><sort><creationdate>20220501</creationdate><title>A high-speed variable-temperature ultrahigh vacuum scanning tunneling microscope with spiral scan capabilities</title><author>Yang, Zechao ; Gura, Leonard ; Kalaß, Florian ; Marschalik, Patrik ; Brinker, Matthias ; Kirstaedter, William ; Hartmann, Jens ; Thielsch, Gero ; Junkes, Heinz ; Heyde, Markus ; Freund, Hans-Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-ca6886b8ebd872236ecf02472c08d78728c17351b97f1572f3fb59458c681a3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chambers</topic><topic>Continuous flow</topic><topic>Control systems</topic><topic>Data acquisition</topic><topic>Diffusion rate</topic><topic>Film growth</topic><topic>High speed</topic><topic>High temperature</topic><topic>High vacuum</topic><topic>Industrial electronics</topic><topic>Oxygen atoms</topic><topic>Scanning tunneling microscopy</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Temperature</topic><topic>Trigonometric functions</topic><topic>Ultrahigh vacuum</topic><topic>Waveform generators</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Zechao</creatorcontrib><creatorcontrib>Gura, Leonard</creatorcontrib><creatorcontrib>Kalaß, Florian</creatorcontrib><creatorcontrib>Marschalik, Patrik</creatorcontrib><creatorcontrib>Brinker, Matthias</creatorcontrib><creatorcontrib>Kirstaedter, William</creatorcontrib><creatorcontrib>Hartmann, Jens</creatorcontrib><creatorcontrib>Thielsch, Gero</creatorcontrib><creatorcontrib>Junkes, Heinz</creatorcontrib><creatorcontrib>Heyde, Markus</creatorcontrib><creatorcontrib>Freund, Hans-Joachim</creatorcontrib><collection>AIP Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Zechao</au><au>Gura, Leonard</au><au>Kalaß, Florian</au><au>Marschalik, Patrik</au><au>Brinker, Matthias</au><au>Kirstaedter, William</au><au>Hartmann, Jens</au><au>Thielsch, Gero</au><au>Junkes, Heinz</au><au>Heyde, Markus</au><au>Freund, Hans-Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A high-speed variable-temperature ultrahigh vacuum scanning tunneling microscope with spiral scan capabilities</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>93</volume><issue>5</issue><spage>053704</spage><epage>053704</epage><pages>053704-053704</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>We present the design and development of a variable-temperature high-speed scanning tunneling microscope (STM). The setup consists of a two-chamber ultra-high vacuum system, including a preparation and a main chamber. The preparation chamber is equipped with standard preparation tools for sample cleaning and film growth. The main chamber hosts the STM that is located within a continuous flow cryostat for counter-cooling during high-temperature measurements. The microscope body is compact, rigid, and highly symmetric to ensure vibrational stability and low thermal drift. We designed a hybrid scanner made of two independent tube piezos for slow and fast scanning, respectively. A commercial STM controller is used for slow scanning, while a high-speed Versa Module Eurocard bus system controls fast scanning. Here, we implement non-conventional spiral geometries for high-speed scanning, which consist of smooth sine and cosine signals created by an arbitrary waveform generator. The tip scans in a quasi-constant height mode, where the logarithm of the tunneling current signal can be regarded as roughly proportional to the surface topography. Scan control and data acquisition have been programmed in the experimental physics and industrial control system framework. With the spiral scans, we atomically resolved diffusion processes of oxygen atoms on the Ru(0001) surface and achieved a time resolution of 8.3 ms per frame at different temperatures. Variable-temperature measurements reveal an influence of the temperature on the oxygen diffusion rate.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>35649753</pmid><doi>10.1063/5.0079868</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0218-4873</orcidid><orcidid>https://orcid.org/0000-0001-5188-852X</orcidid><orcidid>https://orcid.org/0000-0002-7049-0485</orcidid><orcidid>https://orcid.org/0000-0002-3429-6167</orcidid><orcidid>https://orcid.org/0000-0002-0015-235X</orcidid><orcidid>https://orcid.org/0000-0001-6498-705X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2022-05, Vol.93 (5), p.053704-053704
issn 0034-6748
1089-7623
language eng
recordid cdi_scitation_primary_10_1063_5_0079868
source American Institute of Physics (AIP) Journals; Alma/SFX Local Collection
subjects Chambers
Continuous flow
Control systems
Data acquisition
Diffusion rate
Film growth
High speed
High temperature
High vacuum
Industrial electronics
Oxygen atoms
Scanning tunneling microscopy
Scientific apparatus & instruments
Temperature
Trigonometric functions
Ultrahigh vacuum
Waveform generators
Waveforms
title A high-speed variable-temperature ultrahigh vacuum scanning tunneling microscope with spiral scan capabilities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A58%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20high-speed%20variable-temperature%20ultrahigh%20vacuum%20scanning%20tunneling%20microscope%20with%20spiral%20scan%20capabilities&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Yang,%20Zechao&rft.date=2022-05-01&rft.volume=93&rft.issue=5&rft.spage=053704&rft.epage=053704&rft.pages=053704-053704&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/5.0079868&rft_dat=%3Cproquest_scita%3E2662120621%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2662120621&rft_id=info:pmid/35649753&rfr_iscdi=true