Electromechanical behaviors in piezotronic quantum wells based on a quantum-corrected phenomenological theory

Piezotronic devices have attracted a great deal of attention due to their potential applications in self-powered tactile sensing, nano-device memory, human-electronic interface, etc. As the size of piezotronic devices shrinks, some interesting quantum effects begin to appear. In this paper, we estab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2022-02, Vol.131 (5)
Hauptverfasser: Li, Nian, Fang, Kai, Li, Peng, Chen, Feng, Qian, Zhenghua, Kolesov, Vladimir, Kuznetsova, Iren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Journal of applied physics
container_volume 131
creator Li, Nian
Fang, Kai
Li, Peng
Chen, Feng
Qian, Zhenghua
Kolesov, Vladimir
Kuznetsova, Iren
description Piezotronic devices have attracted a great deal of attention due to their potential applications in self-powered tactile sensing, nano-device memory, human-electronic interface, etc. As the size of piezotronic devices shrinks, some interesting quantum effects begin to appear. In this paper, we establish a theory oriented to the engineering application of piezoelectric semiconductors, called quantum-corrected phenomenological (QCP) theory, by coupling the density-gradient theory and the linear piezoelectricity theory through Gauss's law. For numerical verification, we specifically studied the electromechanical behaviors in GaN/AlGaN heterostructure quantum wells (QWs) with both infinite and finite barrier height. The results of electron density, electric potential, and quantum potential are provided, and their dependence on the doping density, the applied stress, and the Al mole fraction is investigated. Some interesting quantum effects are revealed, and their influencing mechanisms are well investigated from a macroscopic perspective. Not only do the conclusions drawn in this paper enrich the fundamental understanding of the piezotronic effect in a QW structure, but also the proposed QCP theory can serve as a valuable tool for future device engineering.
doi_str_mv 10.1063/5.0078085
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0078085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2625095273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-9f14ba8eb63519ff6171e7d596ac48c2366c1e5469076c0aec42e9a9feebf2ad3</originalsourceid><addsrcrecordid>eNqdkE1LxDAURYMoOI4u_AcBVwodk6ZJm6UM4wcMuNF1SdMX26FNOkk7Mv56o6O4d_Xg3sN5cBG6pGRBiWC3fEFIXpCCH6EZJYVMcs7JMZoRktKkkLk8RWchbAihtGByhvpVB3r0rgfdKNtq1eEKGrVrnQ-4tXho4cPFPlZ4Oyk7Tj1-h64LuFIBauwsVr9Fop330RbjoQEbndZ17u1bOjbg_P4cnRjVBbj4uXP0er96WT4m6-eHp-XdOtEszcdEGppVqoBKME6lMYLmFPKaS6F0VuiUCaEp8ExIkgtNFOgsBamkAahMqmo2R1cH7-DddoIwlhs3eRtflqlIOZE8zVmkrg-U9i4ED6YcfNsrvy8pKb_WLHn5s2Zkbw5s0O2oxtbZ_8E75__AcqgN-wSTCYXt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625095273</pqid></control><display><type>article</type><title>Electromechanical behaviors in piezotronic quantum wells based on a quantum-corrected phenomenological theory</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Li, Nian ; Fang, Kai ; Li, Peng ; Chen, Feng ; Qian, Zhenghua ; Kolesov, Vladimir ; Kuznetsova, Iren</creator><creatorcontrib>Li, Nian ; Fang, Kai ; Li, Peng ; Chen, Feng ; Qian, Zhenghua ; Kolesov, Vladimir ; Kuznetsova, Iren</creatorcontrib><description>Piezotronic devices have attracted a great deal of attention due to their potential applications in self-powered tactile sensing, nano-device memory, human-electronic interface, etc. As the size of piezotronic devices shrinks, some interesting quantum effects begin to appear. In this paper, we establish a theory oriented to the engineering application of piezoelectric semiconductors, called quantum-corrected phenomenological (QCP) theory, by coupling the density-gradient theory and the linear piezoelectricity theory through Gauss's law. For numerical verification, we specifically studied the electromechanical behaviors in GaN/AlGaN heterostructure quantum wells (QWs) with both infinite and finite barrier height. The results of electron density, electric potential, and quantum potential are provided, and their dependence on the doping density, the applied stress, and the Al mole fraction is investigated. Some interesting quantum effects are revealed, and their influencing mechanisms are well investigated from a macroscopic perspective. Not only do the conclusions drawn in this paper enrich the fundamental understanding of the piezotronic effect in a QW structure, but also the proposed QCP theory can serve as a valuable tool for future device engineering.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0078085</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aluminum gallium nitrides ; Applied physics ; Electron density ; Heterostructures ; Nanotechnology devices ; Piezoelectricity ; Quantum wells</subject><ispartof>Journal of applied physics, 2022-02, Vol.131 (5)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-9f14ba8eb63519ff6171e7d596ac48c2366c1e5469076c0aec42e9a9feebf2ad3</citedby><cites>FETCH-LOGICAL-c327t-9f14ba8eb63519ff6171e7d596ac48c2366c1e5469076c0aec42e9a9feebf2ad3</cites><orcidid>0000-0003-0262-6704 ; 0000-0003-3400-8361 ; 0000-0002-1564-7179 ; 0000-0001-6427-6362</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0078085$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Li, Nian</creatorcontrib><creatorcontrib>Fang, Kai</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><creatorcontrib>Qian, Zhenghua</creatorcontrib><creatorcontrib>Kolesov, Vladimir</creatorcontrib><creatorcontrib>Kuznetsova, Iren</creatorcontrib><title>Electromechanical behaviors in piezotronic quantum wells based on a quantum-corrected phenomenological theory</title><title>Journal of applied physics</title><description>Piezotronic devices have attracted a great deal of attention due to their potential applications in self-powered tactile sensing, nano-device memory, human-electronic interface, etc. As the size of piezotronic devices shrinks, some interesting quantum effects begin to appear. In this paper, we establish a theory oriented to the engineering application of piezoelectric semiconductors, called quantum-corrected phenomenological (QCP) theory, by coupling the density-gradient theory and the linear piezoelectricity theory through Gauss's law. For numerical verification, we specifically studied the electromechanical behaviors in GaN/AlGaN heterostructure quantum wells (QWs) with both infinite and finite barrier height. The results of electron density, electric potential, and quantum potential are provided, and their dependence on the doping density, the applied stress, and the Al mole fraction is investigated. Some interesting quantum effects are revealed, and their influencing mechanisms are well investigated from a macroscopic perspective. Not only do the conclusions drawn in this paper enrich the fundamental understanding of the piezotronic effect in a QW structure, but also the proposed QCP theory can serve as a valuable tool for future device engineering.</description><subject>Aluminum gallium nitrides</subject><subject>Applied physics</subject><subject>Electron density</subject><subject>Heterostructures</subject><subject>Nanotechnology devices</subject><subject>Piezoelectricity</subject><subject>Quantum wells</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LxDAURYMoOI4u_AcBVwodk6ZJm6UM4wcMuNF1SdMX26FNOkk7Mv56o6O4d_Xg3sN5cBG6pGRBiWC3fEFIXpCCH6EZJYVMcs7JMZoRktKkkLk8RWchbAihtGByhvpVB3r0rgfdKNtq1eEKGrVrnQ-4tXho4cPFPlZ4Oyk7Tj1-h64LuFIBauwsVr9Fop330RbjoQEbndZ17u1bOjbg_P4cnRjVBbj4uXP0er96WT4m6-eHp-XdOtEszcdEGppVqoBKME6lMYLmFPKaS6F0VuiUCaEp8ExIkgtNFOgsBamkAahMqmo2R1cH7-DddoIwlhs3eRtflqlIOZE8zVmkrg-U9i4ED6YcfNsrvy8pKb_WLHn5s2Zkbw5s0O2oxtbZ_8E75__AcqgN-wSTCYXt</recordid><startdate>20220207</startdate><enddate>20220207</enddate><creator>Li, Nian</creator><creator>Fang, Kai</creator><creator>Li, Peng</creator><creator>Chen, Feng</creator><creator>Qian, Zhenghua</creator><creator>Kolesov, Vladimir</creator><creator>Kuznetsova, Iren</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0262-6704</orcidid><orcidid>https://orcid.org/0000-0003-3400-8361</orcidid><orcidid>https://orcid.org/0000-0002-1564-7179</orcidid><orcidid>https://orcid.org/0000-0001-6427-6362</orcidid></search><sort><creationdate>20220207</creationdate><title>Electromechanical behaviors in piezotronic quantum wells based on a quantum-corrected phenomenological theory</title><author>Li, Nian ; Fang, Kai ; Li, Peng ; Chen, Feng ; Qian, Zhenghua ; Kolesov, Vladimir ; Kuznetsova, Iren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-9f14ba8eb63519ff6171e7d596ac48c2366c1e5469076c0aec42e9a9feebf2ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum gallium nitrides</topic><topic>Applied physics</topic><topic>Electron density</topic><topic>Heterostructures</topic><topic>Nanotechnology devices</topic><topic>Piezoelectricity</topic><topic>Quantum wells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Nian</creatorcontrib><creatorcontrib>Fang, Kai</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><creatorcontrib>Qian, Zhenghua</creatorcontrib><creatorcontrib>Kolesov, Vladimir</creatorcontrib><creatorcontrib>Kuznetsova, Iren</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Nian</au><au>Fang, Kai</au><au>Li, Peng</au><au>Chen, Feng</au><au>Qian, Zhenghua</au><au>Kolesov, Vladimir</au><au>Kuznetsova, Iren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromechanical behaviors in piezotronic quantum wells based on a quantum-corrected phenomenological theory</atitle><jtitle>Journal of applied physics</jtitle><date>2022-02-07</date><risdate>2022</risdate><volume>131</volume><issue>5</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Piezotronic devices have attracted a great deal of attention due to their potential applications in self-powered tactile sensing, nano-device memory, human-electronic interface, etc. As the size of piezotronic devices shrinks, some interesting quantum effects begin to appear. In this paper, we establish a theory oriented to the engineering application of piezoelectric semiconductors, called quantum-corrected phenomenological (QCP) theory, by coupling the density-gradient theory and the linear piezoelectricity theory through Gauss's law. For numerical verification, we specifically studied the electromechanical behaviors in GaN/AlGaN heterostructure quantum wells (QWs) with both infinite and finite barrier height. The results of electron density, electric potential, and quantum potential are provided, and their dependence on the doping density, the applied stress, and the Al mole fraction is investigated. Some interesting quantum effects are revealed, and their influencing mechanisms are well investigated from a macroscopic perspective. Not only do the conclusions drawn in this paper enrich the fundamental understanding of the piezotronic effect in a QW structure, but also the proposed QCP theory can serve as a valuable tool for future device engineering.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0078085</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0262-6704</orcidid><orcidid>https://orcid.org/0000-0003-3400-8361</orcidid><orcidid>https://orcid.org/0000-0002-1564-7179</orcidid><orcidid>https://orcid.org/0000-0001-6427-6362</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2022-02, Vol.131 (5)
issn 0021-8979
1089-7550
language eng
recordid cdi_scitation_primary_10_1063_5_0078085
source AIP Journals Complete; Alma/SFX Local Collection
subjects Aluminum gallium nitrides
Applied physics
Electron density
Heterostructures
Nanotechnology devices
Piezoelectricity
Quantum wells
title Electromechanical behaviors in piezotronic quantum wells based on a quantum-corrected phenomenological theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A35%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromechanical%20behaviors%20in%20piezotronic%20quantum%20wells%20based%20on%20a%20quantum-corrected%20phenomenological%20theory&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Li,%20Nian&rft.date=2022-02-07&rft.volume=131&rft.issue=5&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0078085&rft_dat=%3Cproquest_scita%3E2625095273%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625095273&rft_id=info:pmid/&rfr_iscdi=true