Electromechanical behaviors in piezotronic quantum wells based on a quantum-corrected phenomenological theory
Piezotronic devices have attracted a great deal of attention due to their potential applications in self-powered tactile sensing, nano-device memory, human-electronic interface, etc. As the size of piezotronic devices shrinks, some interesting quantum effects begin to appear. In this paper, we estab...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2022-02, Vol.131 (5) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 131 |
creator | Li, Nian Fang, Kai Li, Peng Chen, Feng Qian, Zhenghua Kolesov, Vladimir Kuznetsova, Iren |
description | Piezotronic devices have attracted a great deal of attention due to their potential applications in self-powered tactile sensing, nano-device memory, human-electronic interface, etc. As the size of piezotronic devices shrinks, some interesting quantum effects begin to appear. In this paper, we establish a theory oriented to the engineering application of piezoelectric semiconductors, called quantum-corrected phenomenological (QCP) theory, by coupling the density-gradient theory and the linear piezoelectricity theory through Gauss's law. For numerical verification, we specifically studied the electromechanical behaviors in GaN/AlGaN heterostructure quantum wells (QWs) with both infinite and finite barrier height. The results of electron density, electric potential, and quantum potential are provided, and their dependence on the doping density, the applied stress, and the Al mole fraction is investigated. Some interesting quantum effects are revealed, and their influencing mechanisms are well investigated from a macroscopic perspective. Not only do the conclusions drawn in this paper enrich the fundamental understanding of the piezotronic effect in a QW structure, but also the proposed QCP theory can serve as a valuable tool for future device engineering. |
doi_str_mv | 10.1063/5.0078085 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0078085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2625095273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-9f14ba8eb63519ff6171e7d596ac48c2366c1e5469076c0aec42e9a9feebf2ad3</originalsourceid><addsrcrecordid>eNqdkE1LxDAURYMoOI4u_AcBVwodk6ZJm6UM4wcMuNF1SdMX26FNOkk7Mv56o6O4d_Xg3sN5cBG6pGRBiWC3fEFIXpCCH6EZJYVMcs7JMZoRktKkkLk8RWchbAihtGByhvpVB3r0rgfdKNtq1eEKGrVrnQ-4tXho4cPFPlZ4Oyk7Tj1-h64LuFIBauwsVr9Fop330RbjoQEbndZ17u1bOjbg_P4cnRjVBbj4uXP0er96WT4m6-eHp-XdOtEszcdEGppVqoBKME6lMYLmFPKaS6F0VuiUCaEp8ExIkgtNFOgsBamkAahMqmo2R1cH7-DddoIwlhs3eRtflqlIOZE8zVmkrg-U9i4ED6YcfNsrvy8pKb_WLHn5s2Zkbw5s0O2oxtbZ_8E75__AcqgN-wSTCYXt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625095273</pqid></control><display><type>article</type><title>Electromechanical behaviors in piezotronic quantum wells based on a quantum-corrected phenomenological theory</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Li, Nian ; Fang, Kai ; Li, Peng ; Chen, Feng ; Qian, Zhenghua ; Kolesov, Vladimir ; Kuznetsova, Iren</creator><creatorcontrib>Li, Nian ; Fang, Kai ; Li, Peng ; Chen, Feng ; Qian, Zhenghua ; Kolesov, Vladimir ; Kuznetsova, Iren</creatorcontrib><description>Piezotronic devices have attracted a great deal of attention due to their potential applications in self-powered tactile sensing, nano-device memory, human-electronic interface, etc. As the size of piezotronic devices shrinks, some interesting quantum effects begin to appear. In this paper, we establish a theory oriented to the engineering application of piezoelectric semiconductors, called quantum-corrected phenomenological (QCP) theory, by coupling the density-gradient theory and the linear piezoelectricity theory through Gauss's law. For numerical verification, we specifically studied the electromechanical behaviors in GaN/AlGaN heterostructure quantum wells (QWs) with both infinite and finite barrier height. The results of electron density, electric potential, and quantum potential are provided, and their dependence on the doping density, the applied stress, and the Al mole fraction is investigated. Some interesting quantum effects are revealed, and their influencing mechanisms are well investigated from a macroscopic perspective. Not only do the conclusions drawn in this paper enrich the fundamental understanding of the piezotronic effect in a QW structure, but also the proposed QCP theory can serve as a valuable tool for future device engineering.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0078085</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aluminum gallium nitrides ; Applied physics ; Electron density ; Heterostructures ; Nanotechnology devices ; Piezoelectricity ; Quantum wells</subject><ispartof>Journal of applied physics, 2022-02, Vol.131 (5)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-9f14ba8eb63519ff6171e7d596ac48c2366c1e5469076c0aec42e9a9feebf2ad3</citedby><cites>FETCH-LOGICAL-c327t-9f14ba8eb63519ff6171e7d596ac48c2366c1e5469076c0aec42e9a9feebf2ad3</cites><orcidid>0000-0003-0262-6704 ; 0000-0003-3400-8361 ; 0000-0002-1564-7179 ; 0000-0001-6427-6362</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0078085$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Li, Nian</creatorcontrib><creatorcontrib>Fang, Kai</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><creatorcontrib>Qian, Zhenghua</creatorcontrib><creatorcontrib>Kolesov, Vladimir</creatorcontrib><creatorcontrib>Kuznetsova, Iren</creatorcontrib><title>Electromechanical behaviors in piezotronic quantum wells based on a quantum-corrected phenomenological theory</title><title>Journal of applied physics</title><description>Piezotronic devices have attracted a great deal of attention due to their potential applications in self-powered tactile sensing, nano-device memory, human-electronic interface, etc. As the size of piezotronic devices shrinks, some interesting quantum effects begin to appear. In this paper, we establish a theory oriented to the engineering application of piezoelectric semiconductors, called quantum-corrected phenomenological (QCP) theory, by coupling the density-gradient theory and the linear piezoelectricity theory through Gauss's law. For numerical verification, we specifically studied the electromechanical behaviors in GaN/AlGaN heterostructure quantum wells (QWs) with both infinite and finite barrier height. The results of electron density, electric potential, and quantum potential are provided, and their dependence on the doping density, the applied stress, and the Al mole fraction is investigated. Some interesting quantum effects are revealed, and their influencing mechanisms are well investigated from a macroscopic perspective. Not only do the conclusions drawn in this paper enrich the fundamental understanding of the piezotronic effect in a QW structure, but also the proposed QCP theory can serve as a valuable tool for future device engineering.</description><subject>Aluminum gallium nitrides</subject><subject>Applied physics</subject><subject>Electron density</subject><subject>Heterostructures</subject><subject>Nanotechnology devices</subject><subject>Piezoelectricity</subject><subject>Quantum wells</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LxDAURYMoOI4u_AcBVwodk6ZJm6UM4wcMuNF1SdMX26FNOkk7Mv56o6O4d_Xg3sN5cBG6pGRBiWC3fEFIXpCCH6EZJYVMcs7JMZoRktKkkLk8RWchbAihtGByhvpVB3r0rgfdKNtq1eEKGrVrnQ-4tXho4cPFPlZ4Oyk7Tj1-h64LuFIBauwsVr9Fop330RbjoQEbndZ17u1bOjbg_P4cnRjVBbj4uXP0er96WT4m6-eHp-XdOtEszcdEGppVqoBKME6lMYLmFPKaS6F0VuiUCaEp8ExIkgtNFOgsBamkAahMqmo2R1cH7-DddoIwlhs3eRtflqlIOZE8zVmkrg-U9i4ED6YcfNsrvy8pKb_WLHn5s2Zkbw5s0O2oxtbZ_8E75__AcqgN-wSTCYXt</recordid><startdate>20220207</startdate><enddate>20220207</enddate><creator>Li, Nian</creator><creator>Fang, Kai</creator><creator>Li, Peng</creator><creator>Chen, Feng</creator><creator>Qian, Zhenghua</creator><creator>Kolesov, Vladimir</creator><creator>Kuznetsova, Iren</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0262-6704</orcidid><orcidid>https://orcid.org/0000-0003-3400-8361</orcidid><orcidid>https://orcid.org/0000-0002-1564-7179</orcidid><orcidid>https://orcid.org/0000-0001-6427-6362</orcidid></search><sort><creationdate>20220207</creationdate><title>Electromechanical behaviors in piezotronic quantum wells based on a quantum-corrected phenomenological theory</title><author>Li, Nian ; Fang, Kai ; Li, Peng ; Chen, Feng ; Qian, Zhenghua ; Kolesov, Vladimir ; Kuznetsova, Iren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-9f14ba8eb63519ff6171e7d596ac48c2366c1e5469076c0aec42e9a9feebf2ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum gallium nitrides</topic><topic>Applied physics</topic><topic>Electron density</topic><topic>Heterostructures</topic><topic>Nanotechnology devices</topic><topic>Piezoelectricity</topic><topic>Quantum wells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Nian</creatorcontrib><creatorcontrib>Fang, Kai</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><creatorcontrib>Qian, Zhenghua</creatorcontrib><creatorcontrib>Kolesov, Vladimir</creatorcontrib><creatorcontrib>Kuznetsova, Iren</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Nian</au><au>Fang, Kai</au><au>Li, Peng</au><au>Chen, Feng</au><au>Qian, Zhenghua</au><au>Kolesov, Vladimir</au><au>Kuznetsova, Iren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromechanical behaviors in piezotronic quantum wells based on a quantum-corrected phenomenological theory</atitle><jtitle>Journal of applied physics</jtitle><date>2022-02-07</date><risdate>2022</risdate><volume>131</volume><issue>5</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Piezotronic devices have attracted a great deal of attention due to their potential applications in self-powered tactile sensing, nano-device memory, human-electronic interface, etc. As the size of piezotronic devices shrinks, some interesting quantum effects begin to appear. In this paper, we establish a theory oriented to the engineering application of piezoelectric semiconductors, called quantum-corrected phenomenological (QCP) theory, by coupling the density-gradient theory and the linear piezoelectricity theory through Gauss's law. For numerical verification, we specifically studied the electromechanical behaviors in GaN/AlGaN heterostructure quantum wells (QWs) with both infinite and finite barrier height. The results of electron density, electric potential, and quantum potential are provided, and their dependence on the doping density, the applied stress, and the Al mole fraction is investigated. Some interesting quantum effects are revealed, and their influencing mechanisms are well investigated from a macroscopic perspective. Not only do the conclusions drawn in this paper enrich the fundamental understanding of the piezotronic effect in a QW structure, but also the proposed QCP theory can serve as a valuable tool for future device engineering.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0078085</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0262-6704</orcidid><orcidid>https://orcid.org/0000-0003-3400-8361</orcidid><orcidid>https://orcid.org/0000-0002-1564-7179</orcidid><orcidid>https://orcid.org/0000-0001-6427-6362</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2022-02, Vol.131 (5) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0078085 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Aluminum gallium nitrides Applied physics Electron density Heterostructures Nanotechnology devices Piezoelectricity Quantum wells |
title | Electromechanical behaviors in piezotronic quantum wells based on a quantum-corrected phenomenological theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A35%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromechanical%20behaviors%20in%20piezotronic%20quantum%20wells%20based%20on%20a%20quantum-corrected%20phenomenological%20theory&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Li,%20Nian&rft.date=2022-02-07&rft.volume=131&rft.issue=5&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0078085&rft_dat=%3Cproquest_scita%3E2625095273%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625095273&rft_id=info:pmid/&rfr_iscdi=true |