Sign language illustrator
On its own, the term sign language illustrator represents the device throughout. It is asuggested structure aimed at reducing the disparity in language between ordinary and deaf and dumbpeople. It is entirely focused on the theory of Trans forming images and machine learning. The gesture image is fi...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2393 |
creator | Vyas, Ojesh Dembla, Prateek Jhambani, Rubin Jain, Sunidhi Manish Udawant, Prashant |
description | On its own, the term sign language illustrator represents the device throughout. It is asuggested structure aimed at reducing the disparity in language between ordinary and deaf and dumbpeople. It is entirely focused on the theory of Trans forming images and machine learning. The gesture image is filmed in this process and then pre-processed. And compared to the data collection that finally gives our output, i.e., in text format, the significance of the gesture. This research paper would also concentrate on a hand motion recognition method developed using the principle of machine learning and neural networking, since this approach is more practical and can achieve optimum precision. Other solutions that use HD cameras or sensor-based sensors that detect hand movements are expensive and need more hardware in addition. |
doi_str_mv | 10.1063/5.0074076 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0074076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2666681429</sourcerecordid><originalsourceid>FETCH-LOGICAL-p98f-18b67cb975ddd4a9ee8054f37a7a7c03d1446f5d4a1a3510801022820fe6cddb3</originalsourceid><addsrcrecordid>eNp9kL1LxEAQxRdRMJ4WlnYHdkLOmf3eUg5PhQMLr7BbNtlNyBGTuJsI_vdG7sDOecUU7zczzCPkGmGFINm9WAEoDkqekAyFwFxJlKckAzA8p5y9n5OLlPYA1CilM3Lz1tTdsnVdPbk6LJu2ndIY3djHS3JWuTaFq2NfkN3mcbd-zrevTy_rh20-GF3lqAupysIo4b3nzoSgQfCKKTerBOaRc1mJ2ULHBIIGBEo1hSrI0vuCLcjtYe0Q-88ppNHu-yl280VL5VwaOTUzdXegUtmMbmz6zg6x-XDx23710Qp7_NoOvvoPRrC_Mf0NsB8c7Vd9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2666681429</pqid></control><display><type>conference_proceeding</type><title>Sign language illustrator</title><source>AIP Journals Complete</source><creator>Vyas, Ojesh ; Dembla, Prateek ; Jhambani, Rubin ; Jain, Sunidhi Manish ; Udawant, Prashant</creator><contributor>Ghadai, Ranjan ; Kalita, Kanak ; Ramachandran, M.</contributor><creatorcontrib>Vyas, Ojesh ; Dembla, Prateek ; Jhambani, Rubin ; Jain, Sunidhi Manish ; Udawant, Prashant ; Ghadai, Ranjan ; Kalita, Kanak ; Ramachandran, M.</creatorcontrib><description>On its own, the term sign language illustrator represents the device throughout. It is asuggested structure aimed at reducing the disparity in language between ordinary and deaf and dumbpeople. It is entirely focused on the theory of Trans forming images and machine learning. The gesture image is filmed in this process and then pre-processed. And compared to the data collection that finally gives our output, i.e., in text format, the significance of the gesture. This research paper would also concentrate on a hand motion recognition method developed using the principle of machine learning and neural networking, since this approach is more practical and can achieve optimum precision. Other solutions that use HD cameras or sensor-based sensors that detect hand movements are expensive and need more hardware in addition.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0074076</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Illustrators ; Machine learning ; Motion perception ; Scientific papers ; Sign language</subject><ispartof>AIP conference proceedings, 2022, Vol.2393 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0074076$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Ghadai, Ranjan</contributor><contributor>Kalita, Kanak</contributor><contributor>Ramachandran, M.</contributor><creatorcontrib>Vyas, Ojesh</creatorcontrib><creatorcontrib>Dembla, Prateek</creatorcontrib><creatorcontrib>Jhambani, Rubin</creatorcontrib><creatorcontrib>Jain, Sunidhi Manish</creatorcontrib><creatorcontrib>Udawant, Prashant</creatorcontrib><title>Sign language illustrator</title><title>AIP conference proceedings</title><description>On its own, the term sign language illustrator represents the device throughout. It is asuggested structure aimed at reducing the disparity in language between ordinary and deaf and dumbpeople. It is entirely focused on the theory of Trans forming images and machine learning. The gesture image is filmed in this process and then pre-processed. And compared to the data collection that finally gives our output, i.e., in text format, the significance of the gesture. This research paper would also concentrate on a hand motion recognition method developed using the principle of machine learning and neural networking, since this approach is more practical and can achieve optimum precision. Other solutions that use HD cameras or sensor-based sensors that detect hand movements are expensive and need more hardware in addition.</description><subject>Illustrators</subject><subject>Machine learning</subject><subject>Motion perception</subject><subject>Scientific papers</subject><subject>Sign language</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kL1LxEAQxRdRMJ4WlnYHdkLOmf3eUg5PhQMLr7BbNtlNyBGTuJsI_vdG7sDOecUU7zczzCPkGmGFINm9WAEoDkqekAyFwFxJlKckAzA8p5y9n5OLlPYA1CilM3Lz1tTdsnVdPbk6LJu2ndIY3djHS3JWuTaFq2NfkN3mcbd-zrevTy_rh20-GF3lqAupysIo4b3nzoSgQfCKKTerBOaRc1mJ2ULHBIIGBEo1hSrI0vuCLcjtYe0Q-88ppNHu-yl280VL5VwaOTUzdXegUtmMbmz6zg6x-XDx23710Qp7_NoOvvoPRrC_Mf0NsB8c7Vd9</recordid><startdate>20220519</startdate><enddate>20220519</enddate><creator>Vyas, Ojesh</creator><creator>Dembla, Prateek</creator><creator>Jhambani, Rubin</creator><creator>Jain, Sunidhi Manish</creator><creator>Udawant, Prashant</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20220519</creationdate><title>Sign language illustrator</title><author>Vyas, Ojesh ; Dembla, Prateek ; Jhambani, Rubin ; Jain, Sunidhi Manish ; Udawant, Prashant</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p98f-18b67cb975ddd4a9ee8054f37a7a7c03d1446f5d4a1a3510801022820fe6cddb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Illustrators</topic><topic>Machine learning</topic><topic>Motion perception</topic><topic>Scientific papers</topic><topic>Sign language</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vyas, Ojesh</creatorcontrib><creatorcontrib>Dembla, Prateek</creatorcontrib><creatorcontrib>Jhambani, Rubin</creatorcontrib><creatorcontrib>Jain, Sunidhi Manish</creatorcontrib><creatorcontrib>Udawant, Prashant</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vyas, Ojesh</au><au>Dembla, Prateek</au><au>Jhambani, Rubin</au><au>Jain, Sunidhi Manish</au><au>Udawant, Prashant</au><au>Ghadai, Ranjan</au><au>Kalita, Kanak</au><au>Ramachandran, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sign language illustrator</atitle><btitle>AIP conference proceedings</btitle><date>2022-05-19</date><risdate>2022</risdate><volume>2393</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>On its own, the term sign language illustrator represents the device throughout. It is asuggested structure aimed at reducing the disparity in language between ordinary and deaf and dumbpeople. It is entirely focused on the theory of Trans forming images and machine learning. The gesture image is filmed in this process and then pre-processed. And compared to the data collection that finally gives our output, i.e., in text format, the significance of the gesture. This research paper would also concentrate on a hand motion recognition method developed using the principle of machine learning and neural networking, since this approach is more practical and can achieve optimum precision. Other solutions that use HD cameras or sensor-based sensors that detect hand movements are expensive and need more hardware in addition.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0074076</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2022, Vol.2393 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0074076 |
source | AIP Journals Complete |
subjects | Illustrators Machine learning Motion perception Scientific papers Sign language |
title | Sign language illustrator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A02%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sign%20language%20illustrator&rft.btitle=AIP%20conference%20proceedings&rft.au=Vyas,%20Ojesh&rft.date=2022-05-19&rft.volume=2393&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0074076&rft_dat=%3Cproquest_scita%3E2666681429%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2666681429&rft_id=info:pmid/&rfr_iscdi=true |