Scattering mechanism of hole carriers in organic molecular semiconductors deduced from analyses of terahertz absorption spectra using Drude–Anderson model
To clarify the limiting factor of carrier transport in organic molecular semiconductors, we performed charge modulation spectroscopy of a field-effect transistor with a 3,11-didecyldinaphtho[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene (C10-DNBDT-NW) single crystal, which showed a hole-carrier mobi...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2022-01, Vol.120 (5) |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 120 |
creator | Han, Y. Miyamoto, T. Otaki, T. Takamura, N. Kida, N. Osakabe, N. Tsurumi, J. Watanabe, S. Okamoto, T. Takeya, J. Okamoto, H. |
description | To clarify the limiting factor of carrier transport in organic molecular semiconductors, we performed charge modulation spectroscopy of a field-effect transistor with a 3,11-didecyldinaphtho[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene (C10-DNBDT-NW) single crystal, which showed a hole-carrier mobility of 8.4 cm2 V−1 s−1 at 295 K. The terahertz absorption of electric-field-induced hole carriers increases with decreasing frequency down to 150 cm−1 (4.5 THz). However, it is not reproduced by the simple Drude model but tends to be suppressed with decreasing frequency. The spectral shape of the absorption and the mobility value were simultaneously reproduced by the Drude–Anderson model, which incorporates carrier scattering due to thermal molecular fluctuations. The frequency of the intermolecular vibration that dominates carrier scattering is estimated to be approximately 8 cm−1, which is in good agreement with the theoretically predicted value. Moreover, analyses of the absorption spectra at low temperatures reveal that the mobility increases to 14 cm2 V−1 s−1 at 240 K. These results demonstrate that thermal molecular fluctuations limit the mobility. |
doi_str_mv | 10.1063/5.0073133 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0073133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2625095402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-18fbfae2685a8b35b1e392551b54adba9d7134a45413b71042830012245414e63</originalsourceid><addsrcrecordid>eNp9kLlOxDAQhi0EEstR8AaWqEDK4iPOUSJuCYkCqKOJM2GDkngZOwVUvAMtT8eT4Gipqeb4P_2_Zhg7kmIpRabPzFKIXEutt9hCijxPtJTFNlsIIXSSlUbusj3vX-NolNYL9v1oIQSkbnzhA9oVjJ0fuGv5yvXILRB1SJ53I3f0EkXLhyjYqQfiHofOurGZbHCRaTB22PCW3MBhhP7do5-toj2skMIHh9o7WofOjdyv0QYCPvk5-pKmBn8-v87HJsZFeXAN9gdsp4Xe4-Ff3WfP11dPF7fJ_cPN3cX5fWJVqUIii7ZuAVVWGChqbWqJulTGyNqk0NRQNrnUKaQmlbrOpUhVoYWQSs2bFDO9z443vmtybxP6UL26ieIFvlKZMqI0qVCROtlQlpz3hG21pm4Aeq-kqObnV6b6e35kTzest12A-eB_4F8HJ4di</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625095402</pqid></control><display><type>article</type><title>Scattering mechanism of hole carriers in organic molecular semiconductors deduced from analyses of terahertz absorption spectra using Drude–Anderson model</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><creator>Han, Y. ; Miyamoto, T. ; Otaki, T. ; Takamura, N. ; Kida, N. ; Osakabe, N. ; Tsurumi, J. ; Watanabe, S. ; Okamoto, T. ; Takeya, J. ; Okamoto, H.</creator><creatorcontrib>Han, Y. ; Miyamoto, T. ; Otaki, T. ; Takamura, N. ; Kida, N. ; Osakabe, N. ; Tsurumi, J. ; Watanabe, S. ; Okamoto, T. ; Takeya, J. ; Okamoto, H.</creatorcontrib><description>To clarify the limiting factor of carrier transport in organic molecular semiconductors, we performed charge modulation spectroscopy of a field-effect transistor with a 3,11-didecyldinaphtho[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene (C10-DNBDT-NW) single crystal, which showed a hole-carrier mobility of 8.4 cm2 V−1 s−1 at 295 K. The terahertz absorption of electric-field-induced hole carriers increases with decreasing frequency down to 150 cm−1 (4.5 THz). However, it is not reproduced by the simple Drude model but tends to be suppressed with decreasing frequency. The spectral shape of the absorption and the mobility value were simultaneously reproduced by the Drude–Anderson model, which incorporates carrier scattering due to thermal molecular fluctuations. The frequency of the intermolecular vibration that dominates carrier scattering is estimated to be approximately 8 cm−1, which is in good agreement with the theoretically predicted value. Moreover, analyses of the absorption spectra at low temperatures reveal that the mobility increases to 14 cm2 V−1 s−1 at 240 K. These results demonstrate that thermal molecular fluctuations limit the mobility.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0073133</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Absorption spectra ; Applied physics ; Carrier mobility ; Carrier transport ; Electric fields ; Field effect transistors ; Low temperature ; Organic chemistry ; Organic semiconductors ; Scattering ; Semiconductor devices ; Semiconductors ; Single crystals ; Spectrum analysis ; Terahertz frequencies</subject><ispartof>Applied physics letters, 2022-01, Vol.120 (5)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-18fbfae2685a8b35b1e392551b54adba9d7134a45413b71042830012245414e63</citedby><cites>FETCH-LOGICAL-c292t-18fbfae2685a8b35b1e392551b54adba9d7134a45413b71042830012245414e63</cites><orcidid>0000-0002-4783-0621 ; 0000-0001-7571-1964 ; 0000-0002-0294-0667 ; 0000-0003-2807-5277 ; 0000-0002-8629-6257 ; 0000-0002-7003-1350 ; 0000-0002-3586-9190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0073133$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Han, Y.</creatorcontrib><creatorcontrib>Miyamoto, T.</creatorcontrib><creatorcontrib>Otaki, T.</creatorcontrib><creatorcontrib>Takamura, N.</creatorcontrib><creatorcontrib>Kida, N.</creatorcontrib><creatorcontrib>Osakabe, N.</creatorcontrib><creatorcontrib>Tsurumi, J.</creatorcontrib><creatorcontrib>Watanabe, S.</creatorcontrib><creatorcontrib>Okamoto, T.</creatorcontrib><creatorcontrib>Takeya, J.</creatorcontrib><creatorcontrib>Okamoto, H.</creatorcontrib><title>Scattering mechanism of hole carriers in organic molecular semiconductors deduced from analyses of terahertz absorption spectra using Drude–Anderson model</title><title>Applied physics letters</title><description>To clarify the limiting factor of carrier transport in organic molecular semiconductors, we performed charge modulation spectroscopy of a field-effect transistor with a 3,11-didecyldinaphtho[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene (C10-DNBDT-NW) single crystal, which showed a hole-carrier mobility of 8.4 cm2 V−1 s−1 at 295 K. The terahertz absorption of electric-field-induced hole carriers increases with decreasing frequency down to 150 cm−1 (4.5 THz). However, it is not reproduced by the simple Drude model but tends to be suppressed with decreasing frequency. The spectral shape of the absorption and the mobility value were simultaneously reproduced by the Drude–Anderson model, which incorporates carrier scattering due to thermal molecular fluctuations. The frequency of the intermolecular vibration that dominates carrier scattering is estimated to be approximately 8 cm−1, which is in good agreement with the theoretically predicted value. Moreover, analyses of the absorption spectra at low temperatures reveal that the mobility increases to 14 cm2 V−1 s−1 at 240 K. These results demonstrate that thermal molecular fluctuations limit the mobility.</description><subject>Absorption spectra</subject><subject>Applied physics</subject><subject>Carrier mobility</subject><subject>Carrier transport</subject><subject>Electric fields</subject><subject>Field effect transistors</subject><subject>Low temperature</subject><subject>Organic chemistry</subject><subject>Organic semiconductors</subject><subject>Scattering</subject><subject>Semiconductor devices</subject><subject>Semiconductors</subject><subject>Single crystals</subject><subject>Spectrum analysis</subject><subject>Terahertz frequencies</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kLlOxDAQhi0EEstR8AaWqEDK4iPOUSJuCYkCqKOJM2GDkngZOwVUvAMtT8eT4Gipqeb4P_2_Zhg7kmIpRabPzFKIXEutt9hCijxPtJTFNlsIIXSSlUbusj3vX-NolNYL9v1oIQSkbnzhA9oVjJ0fuGv5yvXILRB1SJ53I3f0EkXLhyjYqQfiHofOurGZbHCRaTB22PCW3MBhhP7do5-toj2skMIHh9o7WofOjdyv0QYCPvk5-pKmBn8-v87HJsZFeXAN9gdsp4Xe4-Ff3WfP11dPF7fJ_cPN3cX5fWJVqUIii7ZuAVVWGChqbWqJulTGyNqk0NRQNrnUKaQmlbrOpUhVoYWQSs2bFDO9z443vmtybxP6UL26ieIFvlKZMqI0qVCROtlQlpz3hG21pm4Aeq-kqObnV6b6e35kTzest12A-eB_4F8HJ4di</recordid><startdate>20220131</startdate><enddate>20220131</enddate><creator>Han, Y.</creator><creator>Miyamoto, T.</creator><creator>Otaki, T.</creator><creator>Takamura, N.</creator><creator>Kida, N.</creator><creator>Osakabe, N.</creator><creator>Tsurumi, J.</creator><creator>Watanabe, S.</creator><creator>Okamoto, T.</creator><creator>Takeya, J.</creator><creator>Okamoto, H.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4783-0621</orcidid><orcidid>https://orcid.org/0000-0001-7571-1964</orcidid><orcidid>https://orcid.org/0000-0002-0294-0667</orcidid><orcidid>https://orcid.org/0000-0003-2807-5277</orcidid><orcidid>https://orcid.org/0000-0002-8629-6257</orcidid><orcidid>https://orcid.org/0000-0002-7003-1350</orcidid><orcidid>https://orcid.org/0000-0002-3586-9190</orcidid></search><sort><creationdate>20220131</creationdate><title>Scattering mechanism of hole carriers in organic molecular semiconductors deduced from analyses of terahertz absorption spectra using Drude–Anderson model</title><author>Han, Y. ; Miyamoto, T. ; Otaki, T. ; Takamura, N. ; Kida, N. ; Osakabe, N. ; Tsurumi, J. ; Watanabe, S. ; Okamoto, T. ; Takeya, J. ; Okamoto, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-18fbfae2685a8b35b1e392551b54adba9d7134a45413b71042830012245414e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorption spectra</topic><topic>Applied physics</topic><topic>Carrier mobility</topic><topic>Carrier transport</topic><topic>Electric fields</topic><topic>Field effect transistors</topic><topic>Low temperature</topic><topic>Organic chemistry</topic><topic>Organic semiconductors</topic><topic>Scattering</topic><topic>Semiconductor devices</topic><topic>Semiconductors</topic><topic>Single crystals</topic><topic>Spectrum analysis</topic><topic>Terahertz frequencies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Y.</creatorcontrib><creatorcontrib>Miyamoto, T.</creatorcontrib><creatorcontrib>Otaki, T.</creatorcontrib><creatorcontrib>Takamura, N.</creatorcontrib><creatorcontrib>Kida, N.</creatorcontrib><creatorcontrib>Osakabe, N.</creatorcontrib><creatorcontrib>Tsurumi, J.</creatorcontrib><creatorcontrib>Watanabe, S.</creatorcontrib><creatorcontrib>Okamoto, T.</creatorcontrib><creatorcontrib>Takeya, J.</creatorcontrib><creatorcontrib>Okamoto, H.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Y.</au><au>Miyamoto, T.</au><au>Otaki, T.</au><au>Takamura, N.</au><au>Kida, N.</au><au>Osakabe, N.</au><au>Tsurumi, J.</au><au>Watanabe, S.</au><au>Okamoto, T.</au><au>Takeya, J.</au><au>Okamoto, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scattering mechanism of hole carriers in organic molecular semiconductors deduced from analyses of terahertz absorption spectra using Drude–Anderson model</atitle><jtitle>Applied physics letters</jtitle><date>2022-01-31</date><risdate>2022</risdate><volume>120</volume><issue>5</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>To clarify the limiting factor of carrier transport in organic molecular semiconductors, we performed charge modulation spectroscopy of a field-effect transistor with a 3,11-didecyldinaphtho[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene (C10-DNBDT-NW) single crystal, which showed a hole-carrier mobility of 8.4 cm2 V−1 s−1 at 295 K. The terahertz absorption of electric-field-induced hole carriers increases with decreasing frequency down to 150 cm−1 (4.5 THz). However, it is not reproduced by the simple Drude model but tends to be suppressed with decreasing frequency. The spectral shape of the absorption and the mobility value were simultaneously reproduced by the Drude–Anderson model, which incorporates carrier scattering due to thermal molecular fluctuations. The frequency of the intermolecular vibration that dominates carrier scattering is estimated to be approximately 8 cm−1, which is in good agreement with the theoretically predicted value. Moreover, analyses of the absorption spectra at low temperatures reveal that the mobility increases to 14 cm2 V−1 s−1 at 240 K. These results demonstrate that thermal molecular fluctuations limit the mobility.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0073133</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4783-0621</orcidid><orcidid>https://orcid.org/0000-0001-7571-1964</orcidid><orcidid>https://orcid.org/0000-0002-0294-0667</orcidid><orcidid>https://orcid.org/0000-0003-2807-5277</orcidid><orcidid>https://orcid.org/0000-0002-8629-6257</orcidid><orcidid>https://orcid.org/0000-0002-7003-1350</orcidid><orcidid>https://orcid.org/0000-0002-3586-9190</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2022-01, Vol.120 (5) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0073133 |
source | American Institute of Physics (AIP) Journals; Alma/SFX Local Collection |
subjects | Absorption spectra Applied physics Carrier mobility Carrier transport Electric fields Field effect transistors Low temperature Organic chemistry Organic semiconductors Scattering Semiconductor devices Semiconductors Single crystals Spectrum analysis Terahertz frequencies |
title | Scattering mechanism of hole carriers in organic molecular semiconductors deduced from analyses of terahertz absorption spectra using Drude–Anderson model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T23%3A16%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scattering%20mechanism%20of%20hole%20carriers%20in%20organic%20molecular%20semiconductors%20deduced%20from%20analyses%20of%20terahertz%20absorption%20spectra%20using%20Drude%E2%80%93Anderson%20model&rft.jtitle=Applied%20physics%20letters&rft.au=Han,%20Y.&rft.date=2022-01-31&rft.volume=120&rft.issue=5&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0073133&rft_dat=%3Cproquest_scita%3E2625095402%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625095402&rft_id=info:pmid/&rfr_iscdi=true |