Characterization of CSA cemented-treated sands via discrete element method

Stabilization of sandy soil by cementitious materials is a widely used ground improvement technique. The typical binding material for this purpose is ordinary Portland cement (OPC). However, OPC would not be classified as eco-friendly material due to significant carbon dioxide emission, and calcium...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bisserik, Almas, Kim, Jong, Satyanaga, Alfrendo, Moon, Sung-Woo
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2441
creator Bisserik, Almas
Kim, Jong
Satyanaga, Alfrendo
Moon, Sung-Woo
description Stabilization of sandy soil by cementitious materials is a widely used ground improvement technique. The typical binding material for this purpose is ordinary Portland cement (OPC). However, OPC would not be classified as eco-friendly material due to significant carbon dioxide emission, and calcium sulfo-aluminate (CSA) cement could be a suitable substitution for OPC. In this study, unconsolidated-undrained triaxial tests are conducted with 7% CSA cement content and 1, 3, and 7 days curing time. Based on the experimental testing, three-dimensional discrete element method (DEM) simulations are used to analyze the CSA cement-stabilized sands underlying microscale physics. A built-in linear-parallel bond model has been implemented in PFC3D-program to describe particle interactions in cemented media and calibrated by the brute force algorithm with the initial try error method to identify the appropriate range of microscale properties. In the simulations, cement contents are controlled by the radius multiplier parameter of the parallel bond model, and the bond stiffness and strength in different curing times are manipulated by a combination of bond effective modulus, stiffness ratio, tensile strength, and cohesion. The results show that displacement vectors in cement-treated soil particles could give the picture of failure plan. The results of the simulations would be employed to estimate the strength development of CSA cement-treated soils in the future.
doi_str_mv 10.1063/5.0073000
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0073000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599241987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2430-54a14394e0e175b19702ec36391e3de19a729f7ee9cf5b52272ad6ffd8c887043</originalsourceid><addsrcrecordid>eNp90M1KAzEUBeAgCtbqwjcIuBOm3iSTyWRZBn8puFDBXUiTGzqlnalJWtCnd6wFd67O5uMe7iHkksGEQSVu5ARACQA4IiMmJStUxapjMgLQZcFL8X5KzlJaAnCtVD0iT83CRusyxvbL5rbvaB9o8zKlDtfYZfRFjmiHpMl2PtFda6lvk4uYkeJqj-ga86L35-Qk2FXCi0OOydvd7WvzUMye7x-b6axwQz8UsrSsFLpEQKbknGkFHJ2ohGYoPDJtFddBIWoX5Fxyrrj1VQi-dnWtoBRjcvV7dxP7jy2mbJb9NnZDpeFSa14yXatBXf-q5Nq8_8xsYru28dMwMD9bGWkOW_2Hd338g2bjg_gGeXlpBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2599241987</pqid></control><display><type>conference_proceeding</type><title>Characterization of CSA cemented-treated sands via discrete element method</title><source>American Institute of Physics (AIP) Journals</source><creator>Bisserik, Almas ; Kim, Jong ; Satyanaga, Alfrendo ; Moon, Sung-Woo</creator><contributor>Ching, Yun Chen</contributor><creatorcontrib>Bisserik, Almas ; Kim, Jong ; Satyanaga, Alfrendo ; Moon, Sung-Woo ; Ching, Yun Chen</creatorcontrib><description>Stabilization of sandy soil by cementitious materials is a widely used ground improvement technique. The typical binding material for this purpose is ordinary Portland cement (OPC). However, OPC would not be classified as eco-friendly material due to significant carbon dioxide emission, and calcium sulfo-aluminate (CSA) cement could be a suitable substitution for OPC. In this study, unconsolidated-undrained triaxial tests are conducted with 7% CSA cement content and 1, 3, and 7 days curing time. Based on the experimental testing, three-dimensional discrete element method (DEM) simulations are used to analyze the CSA cement-stabilized sands underlying microscale physics. A built-in linear-parallel bond model has been implemented in PFC3D-program to describe particle interactions in cemented media and calibrated by the brute force algorithm with the initial try error method to identify the appropriate range of microscale properties. In the simulations, cement contents are controlled by the radius multiplier parameter of the parallel bond model, and the bond stiffness and strength in different curing times are manipulated by a combination of bond effective modulus, stiffness ratio, tensile strength, and cohesion. The results show that displacement vectors in cement-treated soil particles could give the picture of failure plan. The results of the simulations would be employed to estimate the strength development of CSA cement-treated soils in the future.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0073000</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Carbon dioxide ; Cement ; Curing ; Discrete element method ; Identification methods ; Particle interactions ; Portland cements ; Sand ; Sandy soils ; Simulation ; Soil stabilization ; Stiffness ; Sulfoaluminate cement ; Tensile strength ; Triaxial tests</subject><ispartof>AIP conference proceedings, 2021, Vol.2441 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2430-54a14394e0e175b19702ec36391e3de19a729f7ee9cf5b52272ad6ffd8c887043</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0073000$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4509,23928,23929,25138,27922,27923,76154</link.rule.ids></links><search><contributor>Ching, Yun Chen</contributor><creatorcontrib>Bisserik, Almas</creatorcontrib><creatorcontrib>Kim, Jong</creatorcontrib><creatorcontrib>Satyanaga, Alfrendo</creatorcontrib><creatorcontrib>Moon, Sung-Woo</creatorcontrib><title>Characterization of CSA cemented-treated sands via discrete element method</title><title>AIP conference proceedings</title><description>Stabilization of sandy soil by cementitious materials is a widely used ground improvement technique. The typical binding material for this purpose is ordinary Portland cement (OPC). However, OPC would not be classified as eco-friendly material due to significant carbon dioxide emission, and calcium sulfo-aluminate (CSA) cement could be a suitable substitution for OPC. In this study, unconsolidated-undrained triaxial tests are conducted with 7% CSA cement content and 1, 3, and 7 days curing time. Based on the experimental testing, three-dimensional discrete element method (DEM) simulations are used to analyze the CSA cement-stabilized sands underlying microscale physics. A built-in linear-parallel bond model has been implemented in PFC3D-program to describe particle interactions in cemented media and calibrated by the brute force algorithm with the initial try error method to identify the appropriate range of microscale properties. In the simulations, cement contents are controlled by the radius multiplier parameter of the parallel bond model, and the bond stiffness and strength in different curing times are manipulated by a combination of bond effective modulus, stiffness ratio, tensile strength, and cohesion. The results show that displacement vectors in cement-treated soil particles could give the picture of failure plan. The results of the simulations would be employed to estimate the strength development of CSA cement-treated soils in the future.</description><subject>Algorithms</subject><subject>Carbon dioxide</subject><subject>Cement</subject><subject>Curing</subject><subject>Discrete element method</subject><subject>Identification methods</subject><subject>Particle interactions</subject><subject>Portland cements</subject><subject>Sand</subject><subject>Sandy soils</subject><subject>Simulation</subject><subject>Soil stabilization</subject><subject>Stiffness</subject><subject>Sulfoaluminate cement</subject><subject>Tensile strength</subject><subject>Triaxial tests</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp90M1KAzEUBeAgCtbqwjcIuBOm3iSTyWRZBn8puFDBXUiTGzqlnalJWtCnd6wFd67O5uMe7iHkksGEQSVu5ARACQA4IiMmJStUxapjMgLQZcFL8X5KzlJaAnCtVD0iT83CRusyxvbL5rbvaB9o8zKlDtfYZfRFjmiHpMl2PtFda6lvk4uYkeJqj-ga86L35-Qk2FXCi0OOydvd7WvzUMye7x-b6axwQz8UsrSsFLpEQKbknGkFHJ2ohGYoPDJtFddBIWoX5Fxyrrj1VQi-dnWtoBRjcvV7dxP7jy2mbJb9NnZDpeFSa14yXatBXf-q5Nq8_8xsYru28dMwMD9bGWkOW_2Hd338g2bjg_gGeXlpBQ</recordid><startdate>20211119</startdate><enddate>20211119</enddate><creator>Bisserik, Almas</creator><creator>Kim, Jong</creator><creator>Satyanaga, Alfrendo</creator><creator>Moon, Sung-Woo</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20211119</creationdate><title>Characterization of CSA cemented-treated sands via discrete element method</title><author>Bisserik, Almas ; Kim, Jong ; Satyanaga, Alfrendo ; Moon, Sung-Woo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2430-54a14394e0e175b19702ec36391e3de19a729f7ee9cf5b52272ad6ffd8c887043</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Carbon dioxide</topic><topic>Cement</topic><topic>Curing</topic><topic>Discrete element method</topic><topic>Identification methods</topic><topic>Particle interactions</topic><topic>Portland cements</topic><topic>Sand</topic><topic>Sandy soils</topic><topic>Simulation</topic><topic>Soil stabilization</topic><topic>Stiffness</topic><topic>Sulfoaluminate cement</topic><topic>Tensile strength</topic><topic>Triaxial tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bisserik, Almas</creatorcontrib><creatorcontrib>Kim, Jong</creatorcontrib><creatorcontrib>Satyanaga, Alfrendo</creatorcontrib><creatorcontrib>Moon, Sung-Woo</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bisserik, Almas</au><au>Kim, Jong</au><au>Satyanaga, Alfrendo</au><au>Moon, Sung-Woo</au><au>Ching, Yun Chen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Characterization of CSA cemented-treated sands via discrete element method</atitle><btitle>AIP conference proceedings</btitle><date>2021-11-19</date><risdate>2021</risdate><volume>2441</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Stabilization of sandy soil by cementitious materials is a widely used ground improvement technique. The typical binding material for this purpose is ordinary Portland cement (OPC). However, OPC would not be classified as eco-friendly material due to significant carbon dioxide emission, and calcium sulfo-aluminate (CSA) cement could be a suitable substitution for OPC. In this study, unconsolidated-undrained triaxial tests are conducted with 7% CSA cement content and 1, 3, and 7 days curing time. Based on the experimental testing, three-dimensional discrete element method (DEM) simulations are used to analyze the CSA cement-stabilized sands underlying microscale physics. A built-in linear-parallel bond model has been implemented in PFC3D-program to describe particle interactions in cemented media and calibrated by the brute force algorithm with the initial try error method to identify the appropriate range of microscale properties. In the simulations, cement contents are controlled by the radius multiplier parameter of the parallel bond model, and the bond stiffness and strength in different curing times are manipulated by a combination of bond effective modulus, stiffness ratio, tensile strength, and cohesion. The results show that displacement vectors in cement-treated soil particles could give the picture of failure plan. The results of the simulations would be employed to estimate the strength development of CSA cement-treated soils in the future.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0073000</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2021, Vol.2441 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0073000
source American Institute of Physics (AIP) Journals
subjects Algorithms
Carbon dioxide
Cement
Curing
Discrete element method
Identification methods
Particle interactions
Portland cements
Sand
Sandy soils
Simulation
Soil stabilization
Stiffness
Sulfoaluminate cement
Tensile strength
Triaxial tests
title Characterization of CSA cemented-treated sands via discrete element method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A19%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Characterization%20of%20CSA%20cemented-treated%20sands%20via%20discrete%20element%20method&rft.btitle=AIP%20conference%20proceedings&rft.au=Bisserik,%20Almas&rft.date=2021-11-19&rft.volume=2441&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0073000&rft_dat=%3Cproquest_scita%3E2599241987%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599241987&rft_id=info:pmid/&rfr_iscdi=true