Characterization of CSA cemented-treated sands via discrete element method
Stabilization of sandy soil by cementitious materials is a widely used ground improvement technique. The typical binding material for this purpose is ordinary Portland cement (OPC). However, OPC would not be classified as eco-friendly material due to significant carbon dioxide emission, and calcium...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2441 |
creator | Bisserik, Almas Kim, Jong Satyanaga, Alfrendo Moon, Sung-Woo |
description | Stabilization of sandy soil by cementitious materials is a widely used ground improvement technique. The typical binding material for this purpose is ordinary Portland cement (OPC). However, OPC would not be classified as eco-friendly material due to significant carbon dioxide emission, and calcium sulfo-aluminate (CSA) cement could be a suitable substitution for OPC. In this study, unconsolidated-undrained triaxial tests are conducted with 7% CSA cement content and 1, 3, and 7 days curing time. Based on the experimental testing, three-dimensional discrete element method (DEM) simulations are used to analyze the CSA cement-stabilized sands underlying microscale physics. A built-in linear-parallel bond model has been implemented in PFC3D-program to describe particle interactions in cemented media and calibrated by the brute force algorithm with the initial try error method to identify the appropriate range of microscale properties. In the simulations, cement contents are controlled by the radius multiplier parameter of the parallel bond model, and the bond stiffness and strength in different curing times are manipulated by a combination of bond effective modulus, stiffness ratio, tensile strength, and cohesion. The results show that displacement vectors in cement-treated soil particles could give the picture of failure plan. The results of the simulations would be employed to estimate the strength development of CSA cement-treated soils in the future. |
doi_str_mv | 10.1063/5.0073000 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0073000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599241987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2430-54a14394e0e175b19702ec36391e3de19a729f7ee9cf5b52272ad6ffd8c887043</originalsourceid><addsrcrecordid>eNp90M1KAzEUBeAgCtbqwjcIuBOm3iSTyWRZBn8puFDBXUiTGzqlnalJWtCnd6wFd67O5uMe7iHkksGEQSVu5ARACQA4IiMmJStUxapjMgLQZcFL8X5KzlJaAnCtVD0iT83CRusyxvbL5rbvaB9o8zKlDtfYZfRFjmiHpMl2PtFda6lvk4uYkeJqj-ga86L35-Qk2FXCi0OOydvd7WvzUMye7x-b6axwQz8UsrSsFLpEQKbknGkFHJ2ohGYoPDJtFddBIWoX5Fxyrrj1VQi-dnWtoBRjcvV7dxP7jy2mbJb9NnZDpeFSa14yXatBXf-q5Nq8_8xsYru28dMwMD9bGWkOW_2Hd338g2bjg_gGeXlpBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2599241987</pqid></control><display><type>conference_proceeding</type><title>Characterization of CSA cemented-treated sands via discrete element method</title><source>American Institute of Physics (AIP) Journals</source><creator>Bisserik, Almas ; Kim, Jong ; Satyanaga, Alfrendo ; Moon, Sung-Woo</creator><contributor>Ching, Yun Chen</contributor><creatorcontrib>Bisserik, Almas ; Kim, Jong ; Satyanaga, Alfrendo ; Moon, Sung-Woo ; Ching, Yun Chen</creatorcontrib><description>Stabilization of sandy soil by cementitious materials is a widely used ground improvement technique. The typical binding material for this purpose is ordinary Portland cement (OPC). However, OPC would not be classified as eco-friendly material due to significant carbon dioxide emission, and calcium sulfo-aluminate (CSA) cement could be a suitable substitution for OPC. In this study, unconsolidated-undrained triaxial tests are conducted with 7% CSA cement content and 1, 3, and 7 days curing time. Based on the experimental testing, three-dimensional discrete element method (DEM) simulations are used to analyze the CSA cement-stabilized sands underlying microscale physics. A built-in linear-parallel bond model has been implemented in PFC3D-program to describe particle interactions in cemented media and calibrated by the brute force algorithm with the initial try error method to identify the appropriate range of microscale properties. In the simulations, cement contents are controlled by the radius multiplier parameter of the parallel bond model, and the bond stiffness and strength in different curing times are manipulated by a combination of bond effective modulus, stiffness ratio, tensile strength, and cohesion. The results show that displacement vectors in cement-treated soil particles could give the picture of failure plan. The results of the simulations would be employed to estimate the strength development of CSA cement-treated soils in the future.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0073000</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Carbon dioxide ; Cement ; Curing ; Discrete element method ; Identification methods ; Particle interactions ; Portland cements ; Sand ; Sandy soils ; Simulation ; Soil stabilization ; Stiffness ; Sulfoaluminate cement ; Tensile strength ; Triaxial tests</subject><ispartof>AIP conference proceedings, 2021, Vol.2441 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2430-54a14394e0e175b19702ec36391e3de19a729f7ee9cf5b52272ad6ffd8c887043</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0073000$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4509,23928,23929,25138,27922,27923,76154</link.rule.ids></links><search><contributor>Ching, Yun Chen</contributor><creatorcontrib>Bisserik, Almas</creatorcontrib><creatorcontrib>Kim, Jong</creatorcontrib><creatorcontrib>Satyanaga, Alfrendo</creatorcontrib><creatorcontrib>Moon, Sung-Woo</creatorcontrib><title>Characterization of CSA cemented-treated sands via discrete element method</title><title>AIP conference proceedings</title><description>Stabilization of sandy soil by cementitious materials is a widely used ground improvement technique. The typical binding material for this purpose is ordinary Portland cement (OPC). However, OPC would not be classified as eco-friendly material due to significant carbon dioxide emission, and calcium sulfo-aluminate (CSA) cement could be a suitable substitution for OPC. In this study, unconsolidated-undrained triaxial tests are conducted with 7% CSA cement content and 1, 3, and 7 days curing time. Based on the experimental testing, three-dimensional discrete element method (DEM) simulations are used to analyze the CSA cement-stabilized sands underlying microscale physics. A built-in linear-parallel bond model has been implemented in PFC3D-program to describe particle interactions in cemented media and calibrated by the brute force algorithm with the initial try error method to identify the appropriate range of microscale properties. In the simulations, cement contents are controlled by the radius multiplier parameter of the parallel bond model, and the bond stiffness and strength in different curing times are manipulated by a combination of bond effective modulus, stiffness ratio, tensile strength, and cohesion. The results show that displacement vectors in cement-treated soil particles could give the picture of failure plan. The results of the simulations would be employed to estimate the strength development of CSA cement-treated soils in the future.</description><subject>Algorithms</subject><subject>Carbon dioxide</subject><subject>Cement</subject><subject>Curing</subject><subject>Discrete element method</subject><subject>Identification methods</subject><subject>Particle interactions</subject><subject>Portland cements</subject><subject>Sand</subject><subject>Sandy soils</subject><subject>Simulation</subject><subject>Soil stabilization</subject><subject>Stiffness</subject><subject>Sulfoaluminate cement</subject><subject>Tensile strength</subject><subject>Triaxial tests</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp90M1KAzEUBeAgCtbqwjcIuBOm3iSTyWRZBn8puFDBXUiTGzqlnalJWtCnd6wFd67O5uMe7iHkksGEQSVu5ARACQA4IiMmJStUxapjMgLQZcFL8X5KzlJaAnCtVD0iT83CRusyxvbL5rbvaB9o8zKlDtfYZfRFjmiHpMl2PtFda6lvk4uYkeJqj-ga86L35-Qk2FXCi0OOydvd7WvzUMye7x-b6axwQz8UsrSsFLpEQKbknGkFHJ2ohGYoPDJtFddBIWoX5Fxyrrj1VQi-dnWtoBRjcvV7dxP7jy2mbJb9NnZDpeFSa14yXatBXf-q5Nq8_8xsYru28dMwMD9bGWkOW_2Hd338g2bjg_gGeXlpBQ</recordid><startdate>20211119</startdate><enddate>20211119</enddate><creator>Bisserik, Almas</creator><creator>Kim, Jong</creator><creator>Satyanaga, Alfrendo</creator><creator>Moon, Sung-Woo</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20211119</creationdate><title>Characterization of CSA cemented-treated sands via discrete element method</title><author>Bisserik, Almas ; Kim, Jong ; Satyanaga, Alfrendo ; Moon, Sung-Woo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2430-54a14394e0e175b19702ec36391e3de19a729f7ee9cf5b52272ad6ffd8c887043</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Carbon dioxide</topic><topic>Cement</topic><topic>Curing</topic><topic>Discrete element method</topic><topic>Identification methods</topic><topic>Particle interactions</topic><topic>Portland cements</topic><topic>Sand</topic><topic>Sandy soils</topic><topic>Simulation</topic><topic>Soil stabilization</topic><topic>Stiffness</topic><topic>Sulfoaluminate cement</topic><topic>Tensile strength</topic><topic>Triaxial tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bisserik, Almas</creatorcontrib><creatorcontrib>Kim, Jong</creatorcontrib><creatorcontrib>Satyanaga, Alfrendo</creatorcontrib><creatorcontrib>Moon, Sung-Woo</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bisserik, Almas</au><au>Kim, Jong</au><au>Satyanaga, Alfrendo</au><au>Moon, Sung-Woo</au><au>Ching, Yun Chen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Characterization of CSA cemented-treated sands via discrete element method</atitle><btitle>AIP conference proceedings</btitle><date>2021-11-19</date><risdate>2021</risdate><volume>2441</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Stabilization of sandy soil by cementitious materials is a widely used ground improvement technique. The typical binding material for this purpose is ordinary Portland cement (OPC). However, OPC would not be classified as eco-friendly material due to significant carbon dioxide emission, and calcium sulfo-aluminate (CSA) cement could be a suitable substitution for OPC. In this study, unconsolidated-undrained triaxial tests are conducted with 7% CSA cement content and 1, 3, and 7 days curing time. Based on the experimental testing, three-dimensional discrete element method (DEM) simulations are used to analyze the CSA cement-stabilized sands underlying microscale physics. A built-in linear-parallel bond model has been implemented in PFC3D-program to describe particle interactions in cemented media and calibrated by the brute force algorithm with the initial try error method to identify the appropriate range of microscale properties. In the simulations, cement contents are controlled by the radius multiplier parameter of the parallel bond model, and the bond stiffness and strength in different curing times are manipulated by a combination of bond effective modulus, stiffness ratio, tensile strength, and cohesion. The results show that displacement vectors in cement-treated soil particles could give the picture of failure plan. The results of the simulations would be employed to estimate the strength development of CSA cement-treated soils in the future.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0073000</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2021, Vol.2441 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0073000 |
source | American Institute of Physics (AIP) Journals |
subjects | Algorithms Carbon dioxide Cement Curing Discrete element method Identification methods Particle interactions Portland cements Sand Sandy soils Simulation Soil stabilization Stiffness Sulfoaluminate cement Tensile strength Triaxial tests |
title | Characterization of CSA cemented-treated sands via discrete element method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A19%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Characterization%20of%20CSA%20cemented-treated%20sands%20via%20discrete%20element%20method&rft.btitle=AIP%20conference%20proceedings&rft.au=Bisserik,%20Almas&rft.date=2021-11-19&rft.volume=2441&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0073000&rft_dat=%3Cproquest_scita%3E2599241987%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599241987&rft_id=info:pmid/&rfr_iscdi=true |