On the thermodynamics of curved interfaces and the nucleation of hard spheres in a finite system

We determine, for hard spheres, the Helmholtz free energy of a liquid that contains a solid cluster as a function of the size of the solid cluster by means of the formalism of the thermodynamics of curved interfaces. This is done at the constant total number of particles, volume, and temperature. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2022-01, Vol.156 (1), p.014505-014505
Hauptverfasser: Montero de Hijes, P., Vega, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 014505
container_issue 1
container_start_page 014505
container_title The Journal of chemical physics
container_volume 156
creator Montero de Hijes, P.
Vega, C.
description We determine, for hard spheres, the Helmholtz free energy of a liquid that contains a solid cluster as a function of the size of the solid cluster by means of the formalism of the thermodynamics of curved interfaces. This is done at the constant total number of particles, volume, and temperature. We show that under certain conditions, one may have several local minima in the free energy profile, one for the homogeneous liquid and others for the spherical, cylindrical, and planar solid clusters surrounded by liquid. The variation of the interfacial free energy with the radius of the solid cluster and the distance between equimolar and tension surfaces are inputs from simulation results of nucleation studies. This is possible because stable solid clusters in the canonical ensemble become critical in the isothermal–isobaric ensemble. At each local minimum, we find no difference in chemical potential between the phases. At local maxima, we also find equal chemical potential, albeit in this case the nucleus is unstable. Moreover, the theory allows us to describe the stable solid clusters found in simulations. Therefore, we can use it for any combination of the total number of particles, volume, and global density as long as a minimum in the Helmholtz free energy occurs. We also study under which conditions the absolute minimum in the free energy corresponds to a homogeneous liquid or to a heterogeneous system having either spherical, cylindrical, or planar geometry. This work shows that the thermodynamics of curved interfaces at equilibrium can be used to describe nucleation.
doi_str_mv 10.1063/5.0072175
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0072175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618511638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-d111967aa4cebc6de3d0b66eb8705212a92e9a7bcc68f9caf90ba094089b8bd33</originalsourceid><addsrcrecordid>eNp90F1LwzAUBuAgis7phX9AAt6o0HnStGlzKcMvGOxGr2uanLKMNZ1JO9i_t_tQQdCLkJsn78l5CblgMGIg-F06AshilqUHZMAgl1EmJBySAUDMIilAnJDTEOYAwLI4OSYnPJEy5ykMyPvU0XaGm-Prxqydqq0OtKmo7vwKDbWuRV8pjYEqZ7bWdXqBqrWN27iZ8oaGZf--J9ZRRSvrbIs0rEOL9Rk5qtQi4Pn-HpK3x4fX8XM0mT69jO8nkeY5byPDGJMiUyrRWGphkBsohcAyzyCNWaxkjFJlpdYir6RWlYRSgUz6bcu8NJwPyfUud-mbjw5DW9Q2aFwslMOmC0UsWJ4yJvppQ3L1i86bzrv-dxuVQQ5JKnp1s1PaNyF4rIqlt7Xy64JBsam9SIt97b293Cd2ZY3mW3713IPbHQjattvq_k37E68a_wOLpan4J-AWmLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617080456</pqid></control><display><type>article</type><title>On the thermodynamics of curved interfaces and the nucleation of hard spheres in a finite system</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Montero de Hijes, P. ; Vega, C.</creator><creatorcontrib>Montero de Hijes, P. ; Vega, C.</creatorcontrib><description>We determine, for hard spheres, the Helmholtz free energy of a liquid that contains a solid cluster as a function of the size of the solid cluster by means of the formalism of the thermodynamics of curved interfaces. This is done at the constant total number of particles, volume, and temperature. We show that under certain conditions, one may have several local minima in the free energy profile, one for the homogeneous liquid and others for the spherical, cylindrical, and planar solid clusters surrounded by liquid. The variation of the interfacial free energy with the radius of the solid cluster and the distance between equimolar and tension surfaces are inputs from simulation results of nucleation studies. This is possible because stable solid clusters in the canonical ensemble become critical in the isothermal–isobaric ensemble. At each local minimum, we find no difference in chemical potential between the phases. At local maxima, we also find equal chemical potential, albeit in this case the nucleus is unstable. Moreover, the theory allows us to describe the stable solid clusters found in simulations. Therefore, we can use it for any combination of the total number of particles, volume, and global density as long as a minimum in the Helmholtz free energy occurs. We also study under which conditions the absolute minimum in the free energy corresponds to a homogeneous liquid or to a heterogeneous system having either spherical, cylindrical, or planar geometry. This work shows that the thermodynamics of curved interfaces at equilibrium can be used to describe nucleation.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0072175</identifier><identifier>PMID: 34998350</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Chemical potential ; Clusters ; Free energy ; Maxima ; Nucleation ; Thermodynamic equilibrium ; Thermodynamics</subject><ispartof>The Journal of chemical physics, 2022-01, Vol.156 (1), p.014505-014505</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-d111967aa4cebc6de3d0b66eb8705212a92e9a7bcc68f9caf90ba094089b8bd33</citedby><cites>FETCH-LOGICAL-c383t-d111967aa4cebc6de3d0b66eb8705212a92e9a7bcc68f9caf90ba094089b8bd33</cites><orcidid>0000-0001-8873-8445 ; 0000-0002-2417-9645 ; 0000000224179645 ; 0000000188738445</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0072175$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34998350$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Montero de Hijes, P.</creatorcontrib><creatorcontrib>Vega, C.</creatorcontrib><title>On the thermodynamics of curved interfaces and the nucleation of hard spheres in a finite system</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We determine, for hard spheres, the Helmholtz free energy of a liquid that contains a solid cluster as a function of the size of the solid cluster by means of the formalism of the thermodynamics of curved interfaces. This is done at the constant total number of particles, volume, and temperature. We show that under certain conditions, one may have several local minima in the free energy profile, one for the homogeneous liquid and others for the spherical, cylindrical, and planar solid clusters surrounded by liquid. The variation of the interfacial free energy with the radius of the solid cluster and the distance between equimolar and tension surfaces are inputs from simulation results of nucleation studies. This is possible because stable solid clusters in the canonical ensemble become critical in the isothermal–isobaric ensemble. At each local minimum, we find no difference in chemical potential between the phases. At local maxima, we also find equal chemical potential, albeit in this case the nucleus is unstable. Moreover, the theory allows us to describe the stable solid clusters found in simulations. Therefore, we can use it for any combination of the total number of particles, volume, and global density as long as a minimum in the Helmholtz free energy occurs. We also study under which conditions the absolute minimum in the free energy corresponds to a homogeneous liquid or to a heterogeneous system having either spherical, cylindrical, or planar geometry. This work shows that the thermodynamics of curved interfaces at equilibrium can be used to describe nucleation.</description><subject>Chemical potential</subject><subject>Clusters</subject><subject>Free energy</subject><subject>Maxima</subject><subject>Nucleation</subject><subject>Thermodynamic equilibrium</subject><subject>Thermodynamics</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90F1LwzAUBuAgis7phX9AAt6o0HnStGlzKcMvGOxGr2uanLKMNZ1JO9i_t_tQQdCLkJsn78l5CblgMGIg-F06AshilqUHZMAgl1EmJBySAUDMIilAnJDTEOYAwLI4OSYnPJEy5ykMyPvU0XaGm-Prxqydqq0OtKmo7vwKDbWuRV8pjYEqZ7bWdXqBqrWN27iZ8oaGZf--J9ZRRSvrbIs0rEOL9Rk5qtQi4Pn-HpK3x4fX8XM0mT69jO8nkeY5byPDGJMiUyrRWGphkBsohcAyzyCNWaxkjFJlpdYir6RWlYRSgUz6bcu8NJwPyfUud-mbjw5DW9Q2aFwslMOmC0UsWJ4yJvppQ3L1i86bzrv-dxuVQQ5JKnp1s1PaNyF4rIqlt7Xy64JBsam9SIt97b293Cd2ZY3mW3713IPbHQjattvq_k37E68a_wOLpan4J-AWmLQ</recordid><startdate>20220107</startdate><enddate>20220107</enddate><creator>Montero de Hijes, P.</creator><creator>Vega, C.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8873-8445</orcidid><orcidid>https://orcid.org/0000-0002-2417-9645</orcidid><orcidid>https://orcid.org/0000000224179645</orcidid><orcidid>https://orcid.org/0000000188738445</orcidid></search><sort><creationdate>20220107</creationdate><title>On the thermodynamics of curved interfaces and the nucleation of hard spheres in a finite system</title><author>Montero de Hijes, P. ; Vega, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-d111967aa4cebc6de3d0b66eb8705212a92e9a7bcc68f9caf90ba094089b8bd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemical potential</topic><topic>Clusters</topic><topic>Free energy</topic><topic>Maxima</topic><topic>Nucleation</topic><topic>Thermodynamic equilibrium</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montero de Hijes, P.</creatorcontrib><creatorcontrib>Vega, C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montero de Hijes, P.</au><au>Vega, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the thermodynamics of curved interfaces and the nucleation of hard spheres in a finite system</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2022-01-07</date><risdate>2022</risdate><volume>156</volume><issue>1</issue><spage>014505</spage><epage>014505</epage><pages>014505-014505</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We determine, for hard spheres, the Helmholtz free energy of a liquid that contains a solid cluster as a function of the size of the solid cluster by means of the formalism of the thermodynamics of curved interfaces. This is done at the constant total number of particles, volume, and temperature. We show that under certain conditions, one may have several local minima in the free energy profile, one for the homogeneous liquid and others for the spherical, cylindrical, and planar solid clusters surrounded by liquid. The variation of the interfacial free energy with the radius of the solid cluster and the distance between equimolar and tension surfaces are inputs from simulation results of nucleation studies. This is possible because stable solid clusters in the canonical ensemble become critical in the isothermal–isobaric ensemble. At each local minimum, we find no difference in chemical potential between the phases. At local maxima, we also find equal chemical potential, albeit in this case the nucleus is unstable. Moreover, the theory allows us to describe the stable solid clusters found in simulations. Therefore, we can use it for any combination of the total number of particles, volume, and global density as long as a minimum in the Helmholtz free energy occurs. We also study under which conditions the absolute minimum in the free energy corresponds to a homogeneous liquid or to a heterogeneous system having either spherical, cylindrical, or planar geometry. This work shows that the thermodynamics of curved interfaces at equilibrium can be used to describe nucleation.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>34998350</pmid><doi>10.1063/5.0072175</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8873-8445</orcidid><orcidid>https://orcid.org/0000-0002-2417-9645</orcidid><orcidid>https://orcid.org/0000000224179645</orcidid><orcidid>https://orcid.org/0000000188738445</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2022-01, Vol.156 (1), p.014505-014505
issn 0021-9606
1089-7690
language eng
recordid cdi_scitation_primary_10_1063_5_0072175
source AIP Journals Complete; Alma/SFX Local Collection
subjects Chemical potential
Clusters
Free energy
Maxima
Nucleation
Thermodynamic equilibrium
Thermodynamics
title On the thermodynamics of curved interfaces and the nucleation of hard spheres in a finite system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A19%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20thermodynamics%20of%20curved%20interfaces%20and%20the%20nucleation%20of%20hard%20spheres%20in%20a%20finite%20system&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Montero%20de%20Hijes,%20P.&rft.date=2022-01-07&rft.volume=156&rft.issue=1&rft.spage=014505&rft.epage=014505&rft.pages=014505-014505&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0072175&rft_dat=%3Cproquest_scita%3E2618511638%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617080456&rft_id=info:pmid/34998350&rfr_iscdi=true