On the thermodynamics of curved interfaces and the nucleation of hard spheres in a finite system
We determine, for hard spheres, the Helmholtz free energy of a liquid that contains a solid cluster as a function of the size of the solid cluster by means of the formalism of the thermodynamics of curved interfaces. This is done at the constant total number of particles, volume, and temperature. We...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2022-01, Vol.156 (1), p.014505-014505 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 014505 |
---|---|
container_issue | 1 |
container_start_page | 014505 |
container_title | The Journal of chemical physics |
container_volume | 156 |
creator | Montero de Hijes, P. Vega, C. |
description | We determine, for hard spheres, the Helmholtz free energy of a liquid that contains a solid cluster as a function of the size of the solid cluster by means of the formalism of the thermodynamics of curved interfaces. This is done at the constant total number of particles, volume, and temperature. We show that under certain conditions, one may have several local minima in the free energy profile, one for the homogeneous liquid and others for the spherical, cylindrical, and planar solid clusters surrounded by liquid. The variation of the interfacial free energy with the radius of the solid cluster and the distance between equimolar and tension surfaces are inputs from simulation results of nucleation studies. This is possible because stable solid clusters in the canonical ensemble become critical in the isothermal–isobaric ensemble. At each local minimum, we find no difference in chemical potential between the phases. At local maxima, we also find equal chemical potential, albeit in this case the nucleus is unstable. Moreover, the theory allows us to describe the stable solid clusters found in simulations. Therefore, we can use it for any combination of the total number of particles, volume, and global density as long as a minimum in the Helmholtz free energy occurs. We also study under which conditions the absolute minimum in the free energy corresponds to a homogeneous liquid or to a heterogeneous system having either spherical, cylindrical, or planar geometry. This work shows that the thermodynamics of curved interfaces at equilibrium can be used to describe nucleation. |
doi_str_mv | 10.1063/5.0072175 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0072175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618511638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-d111967aa4cebc6de3d0b66eb8705212a92e9a7bcc68f9caf90ba094089b8bd33</originalsourceid><addsrcrecordid>eNp90F1LwzAUBuAgis7phX9AAt6o0HnStGlzKcMvGOxGr2uanLKMNZ1JO9i_t_tQQdCLkJsn78l5CblgMGIg-F06AshilqUHZMAgl1EmJBySAUDMIilAnJDTEOYAwLI4OSYnPJEy5ykMyPvU0XaGm-Prxqydqq0OtKmo7vwKDbWuRV8pjYEqZ7bWdXqBqrWN27iZ8oaGZf--J9ZRRSvrbIs0rEOL9Rk5qtQi4Pn-HpK3x4fX8XM0mT69jO8nkeY5byPDGJMiUyrRWGphkBsohcAyzyCNWaxkjFJlpdYir6RWlYRSgUz6bcu8NJwPyfUud-mbjw5DW9Q2aFwslMOmC0UsWJ4yJvppQ3L1i86bzrv-dxuVQQ5JKnp1s1PaNyF4rIqlt7Xy64JBsam9SIt97b293Cd2ZY3mW3713IPbHQjattvq_k37E68a_wOLpan4J-AWmLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617080456</pqid></control><display><type>article</type><title>On the thermodynamics of curved interfaces and the nucleation of hard spheres in a finite system</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Montero de Hijes, P. ; Vega, C.</creator><creatorcontrib>Montero de Hijes, P. ; Vega, C.</creatorcontrib><description>We determine, for hard spheres, the Helmholtz free energy of a liquid that contains a solid cluster as a function of the size of the solid cluster by means of the formalism of the thermodynamics of curved interfaces. This is done at the constant total number of particles, volume, and temperature. We show that under certain conditions, one may have several local minima in the free energy profile, one for the homogeneous liquid and others for the spherical, cylindrical, and planar solid clusters surrounded by liquid. The variation of the interfacial free energy with the radius of the solid cluster and the distance between equimolar and tension surfaces are inputs from simulation results of nucleation studies. This is possible because stable solid clusters in the canonical ensemble become critical in the isothermal–isobaric ensemble. At each local minimum, we find no difference in chemical potential between the phases. At local maxima, we also find equal chemical potential, albeit in this case the nucleus is unstable. Moreover, the theory allows us to describe the stable solid clusters found in simulations. Therefore, we can use it for any combination of the total number of particles, volume, and global density as long as a minimum in the Helmholtz free energy occurs. We also study under which conditions the absolute minimum in the free energy corresponds to a homogeneous liquid or to a heterogeneous system having either spherical, cylindrical, or planar geometry. This work shows that the thermodynamics of curved interfaces at equilibrium can be used to describe nucleation.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0072175</identifier><identifier>PMID: 34998350</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Chemical potential ; Clusters ; Free energy ; Maxima ; Nucleation ; Thermodynamic equilibrium ; Thermodynamics</subject><ispartof>The Journal of chemical physics, 2022-01, Vol.156 (1), p.014505-014505</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-d111967aa4cebc6de3d0b66eb8705212a92e9a7bcc68f9caf90ba094089b8bd33</citedby><cites>FETCH-LOGICAL-c383t-d111967aa4cebc6de3d0b66eb8705212a92e9a7bcc68f9caf90ba094089b8bd33</cites><orcidid>0000-0001-8873-8445 ; 0000-0002-2417-9645 ; 0000000224179645 ; 0000000188738445</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0072175$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34998350$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Montero de Hijes, P.</creatorcontrib><creatorcontrib>Vega, C.</creatorcontrib><title>On the thermodynamics of curved interfaces and the nucleation of hard spheres in a finite system</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We determine, for hard spheres, the Helmholtz free energy of a liquid that contains a solid cluster as a function of the size of the solid cluster by means of the formalism of the thermodynamics of curved interfaces. This is done at the constant total number of particles, volume, and temperature. We show that under certain conditions, one may have several local minima in the free energy profile, one for the homogeneous liquid and others for the spherical, cylindrical, and planar solid clusters surrounded by liquid. The variation of the interfacial free energy with the radius of the solid cluster and the distance between equimolar and tension surfaces are inputs from simulation results of nucleation studies. This is possible because stable solid clusters in the canonical ensemble become critical in the isothermal–isobaric ensemble. At each local minimum, we find no difference in chemical potential between the phases. At local maxima, we also find equal chemical potential, albeit in this case the nucleus is unstable. Moreover, the theory allows us to describe the stable solid clusters found in simulations. Therefore, we can use it for any combination of the total number of particles, volume, and global density as long as a minimum in the Helmholtz free energy occurs. We also study under which conditions the absolute minimum in the free energy corresponds to a homogeneous liquid or to a heterogeneous system having either spherical, cylindrical, or planar geometry. This work shows that the thermodynamics of curved interfaces at equilibrium can be used to describe nucleation.</description><subject>Chemical potential</subject><subject>Clusters</subject><subject>Free energy</subject><subject>Maxima</subject><subject>Nucleation</subject><subject>Thermodynamic equilibrium</subject><subject>Thermodynamics</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90F1LwzAUBuAgis7phX9AAt6o0HnStGlzKcMvGOxGr2uanLKMNZ1JO9i_t_tQQdCLkJsn78l5CblgMGIg-F06AshilqUHZMAgl1EmJBySAUDMIilAnJDTEOYAwLI4OSYnPJEy5ykMyPvU0XaGm-Prxqydqq0OtKmo7vwKDbWuRV8pjYEqZ7bWdXqBqrWN27iZ8oaGZf--J9ZRRSvrbIs0rEOL9Rk5qtQi4Pn-HpK3x4fX8XM0mT69jO8nkeY5byPDGJMiUyrRWGphkBsohcAyzyCNWaxkjFJlpdYir6RWlYRSgUz6bcu8NJwPyfUud-mbjw5DW9Q2aFwslMOmC0UsWJ4yJvppQ3L1i86bzrv-dxuVQQ5JKnp1s1PaNyF4rIqlt7Xy64JBsam9SIt97b293Cd2ZY3mW3713IPbHQjattvq_k37E68a_wOLpan4J-AWmLQ</recordid><startdate>20220107</startdate><enddate>20220107</enddate><creator>Montero de Hijes, P.</creator><creator>Vega, C.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8873-8445</orcidid><orcidid>https://orcid.org/0000-0002-2417-9645</orcidid><orcidid>https://orcid.org/0000000224179645</orcidid><orcidid>https://orcid.org/0000000188738445</orcidid></search><sort><creationdate>20220107</creationdate><title>On the thermodynamics of curved interfaces and the nucleation of hard spheres in a finite system</title><author>Montero de Hijes, P. ; Vega, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-d111967aa4cebc6de3d0b66eb8705212a92e9a7bcc68f9caf90ba094089b8bd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemical potential</topic><topic>Clusters</topic><topic>Free energy</topic><topic>Maxima</topic><topic>Nucleation</topic><topic>Thermodynamic equilibrium</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montero de Hijes, P.</creatorcontrib><creatorcontrib>Vega, C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montero de Hijes, P.</au><au>Vega, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the thermodynamics of curved interfaces and the nucleation of hard spheres in a finite system</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2022-01-07</date><risdate>2022</risdate><volume>156</volume><issue>1</issue><spage>014505</spage><epage>014505</epage><pages>014505-014505</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We determine, for hard spheres, the Helmholtz free energy of a liquid that contains a solid cluster as a function of the size of the solid cluster by means of the formalism of the thermodynamics of curved interfaces. This is done at the constant total number of particles, volume, and temperature. We show that under certain conditions, one may have several local minima in the free energy profile, one for the homogeneous liquid and others for the spherical, cylindrical, and planar solid clusters surrounded by liquid. The variation of the interfacial free energy with the radius of the solid cluster and the distance between equimolar and tension surfaces are inputs from simulation results of nucleation studies. This is possible because stable solid clusters in the canonical ensemble become critical in the isothermal–isobaric ensemble. At each local minimum, we find no difference in chemical potential between the phases. At local maxima, we also find equal chemical potential, albeit in this case the nucleus is unstable. Moreover, the theory allows us to describe the stable solid clusters found in simulations. Therefore, we can use it for any combination of the total number of particles, volume, and global density as long as a minimum in the Helmholtz free energy occurs. We also study under which conditions the absolute minimum in the free energy corresponds to a homogeneous liquid or to a heterogeneous system having either spherical, cylindrical, or planar geometry. This work shows that the thermodynamics of curved interfaces at equilibrium can be used to describe nucleation.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>34998350</pmid><doi>10.1063/5.0072175</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8873-8445</orcidid><orcidid>https://orcid.org/0000-0002-2417-9645</orcidid><orcidid>https://orcid.org/0000000224179645</orcidid><orcidid>https://orcid.org/0000000188738445</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2022-01, Vol.156 (1), p.014505-014505 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0072175 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Chemical potential Clusters Free energy Maxima Nucleation Thermodynamic equilibrium Thermodynamics |
title | On the thermodynamics of curved interfaces and the nucleation of hard spheres in a finite system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A19%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20thermodynamics%20of%20curved%20interfaces%20and%20the%20nucleation%20of%20hard%20spheres%20in%20a%20finite%20system&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Montero%20de%20Hijes,%20P.&rft.date=2022-01-07&rft.volume=156&rft.issue=1&rft.spage=014505&rft.epage=014505&rft.pages=014505-014505&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0072175&rft_dat=%3Cproquest_scita%3E2618511638%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617080456&rft_id=info:pmid/34998350&rfr_iscdi=true |