Random alloy thick AlGaAsSb avalanche photodiodes on InP substrates
We demonstrate low noise random alloy (RA) Al0.85Ga0.15AsSb (hereafter AlGaAsSb) avalanche photodiodes (APDs) nearly lattice-matched to InP substrates. In contrast to digital alloy (DA), RAs are manufacturable due to the ease of growth. The 910 nm-thick RA AlGaAsSb was grown at a low temperature aro...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2022-02, Vol.120 (7) |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 120 |
creator | Lee, S. Guo, B. Kodati, S. H. Jung, H. Schwartz, M. Jones, A. H. Winslow, M. Grein, C. H. Ronningen, T. J. Campbell, J. C. Krishna, S. |
description | We demonstrate low noise random alloy (RA) Al0.85Ga0.15AsSb (hereafter AlGaAsSb) avalanche photodiodes (APDs) nearly lattice-matched to InP substrates. In contrast to digital alloy (DA), RAs are manufacturable due to the ease of growth. The 910 nm-thick RA AlGaAsSb was grown at a low temperature around 450 °C to mitigate phase separation by suppressing surface mobility of adatoms. The high quality of the RA AlGaAsSb material was verified by x-ray diffraction, Nomarski, and atomic force microscope images. Capacitance–voltage measurement found that the background doping concentration was 6–7
× 1014 cm−3, indicating very low impurity density in the RA AlGaAsSb material. Current–voltage measurements were carried out under dark condition and 455 nm laser illumination at room temperature. The breakdown occurs at −58 V. The dark current density at a gain of 10 was found to be 70 μA/cm2. This value is three orders of magnitude lower than previously reported DA AlAs0.56Sb0.44 APDs [Yi et al., Nat. Photonics 13, 683 (2019)], one order of magnitude lower than DA AlGaAsSb [Lee et al., Appl. Phys. Lett. 118, 081106 (2021)], and comparable to RA AlInAsSb APDs [Kodati et al., Appl. Phys. Lett. 118, 091101 (2021)]. In addition, the measured excess noise shows a low k (the ratio of impact ionization coefficients) of 0.01. These noise characteristics make the RA AlGaAsSb multiplier suitable for commercial applications, such as optical communication and LiDAR systems. |
doi_str_mv | 10.1063/5.0067408 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0067408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628385740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-a6a9f3b23dd663647be5a52a60e3433034a05ecc257ae59cf748b8afbf58a773</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtbqwX8Q8KSwNdnZfPRYilahoGjvYTabpVu3mzVJC_33rrTg3dMw8PAO8xJyy9mEMwmPYsKYVAXTZ2TEmVIZcK7PyYgxBpmcCn5JrmLcDKvIAUZk_oFd5bcU29YfaFo39ovO2gXO4mdJcY8tdnbtaL_2yVeNr1ykvqOv3TuNuzKmgMnFa3JRYxvdzWmOyer5aTV_yZZvi9f5bJlZyFXKUOK0hjKHqpISZKFKJ1DkKJmDAoBBgUw4a3Oh0ImprVWhS411WQuNSsGY3B1j--C_dy4ms_G70A0XTS5zDVoMfw_q_qhs8DEGV5s-NFsMB8OZ-a3ICHOqaLAPRxttkzA1vvsf3vvwB01f1fADTxpznw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628385740</pqid></control><display><type>article</type><title>Random alloy thick AlGaAsSb avalanche photodiodes on InP substrates</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Lee, S. ; Guo, B. ; Kodati, S. H. ; Jung, H. ; Schwartz, M. ; Jones, A. H. ; Winslow, M. ; Grein, C. H. ; Ronningen, T. J. ; Campbell, J. C. ; Krishna, S.</creator><creatorcontrib>Lee, S. ; Guo, B. ; Kodati, S. H. ; Jung, H. ; Schwartz, M. ; Jones, A. H. ; Winslow, M. ; Grein, C. H. ; Ronningen, T. J. ; Campbell, J. C. ; Krishna, S.</creatorcontrib><description>We demonstrate low noise random alloy (RA) Al0.85Ga0.15AsSb (hereafter AlGaAsSb) avalanche photodiodes (APDs) nearly lattice-matched to InP substrates. In contrast to digital alloy (DA), RAs are manufacturable due to the ease of growth. The 910 nm-thick RA AlGaAsSb was grown at a low temperature around 450 °C to mitigate phase separation by suppressing surface mobility of adatoms. The high quality of the RA AlGaAsSb material was verified by x-ray diffraction, Nomarski, and atomic force microscope images. Capacitance–voltage measurement found that the background doping concentration was 6–7
× 1014 cm−3, indicating very low impurity density in the RA AlGaAsSb material. Current–voltage measurements were carried out under dark condition and 455 nm laser illumination at room temperature. The breakdown occurs at −58 V. The dark current density at a gain of 10 was found to be 70 μA/cm2. This value is three orders of magnitude lower than previously reported DA AlAs0.56Sb0.44 APDs [Yi et al., Nat. Photonics 13, 683 (2019)], one order of magnitude lower than DA AlGaAsSb [Lee et al., Appl. Phys. Lett. 118, 081106 (2021)], and comparable to RA AlInAsSb APDs [Kodati et al., Appl. Phys. Lett. 118, 091101 (2021)]. In addition, the measured excess noise shows a low k (the ratio of impact ionization coefficients) of 0.01. These noise characteristics make the RA AlGaAsSb multiplier suitable for commercial applications, such as optical communication and LiDAR systems.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0067408</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Adatoms ; Applied physics ; Atomic force microscopes ; Atomic force microscopy ; Avalanche diodes ; Dark current ; Electrical measurement ; Indium phosphides ; Ionization coefficients ; Lattice matching ; Low noise ; Low temperature ; Noise ; Optical communication ; Phase separation ; Photodiodes ; Room temperature ; Substrates</subject><ispartof>Applied physics letters, 2022-02, Vol.120 (7)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-a6a9f3b23dd663647be5a52a60e3433034a05ecc257ae59cf748b8afbf58a773</citedby><cites>FETCH-LOGICAL-c327t-a6a9f3b23dd663647be5a52a60e3433034a05ecc257ae59cf748b8afbf58a773</cites><orcidid>0000-0001-6812-7647 ; 0000-0002-5669-1555 ; 0000-0002-3889-4893 ; 0000-0002-5469-0794</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0067408$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,778,782,792,4500,27907,27908,76135</link.rule.ids></links><search><creatorcontrib>Lee, S.</creatorcontrib><creatorcontrib>Guo, B.</creatorcontrib><creatorcontrib>Kodati, S. H.</creatorcontrib><creatorcontrib>Jung, H.</creatorcontrib><creatorcontrib>Schwartz, M.</creatorcontrib><creatorcontrib>Jones, A. H.</creatorcontrib><creatorcontrib>Winslow, M.</creatorcontrib><creatorcontrib>Grein, C. H.</creatorcontrib><creatorcontrib>Ronningen, T. J.</creatorcontrib><creatorcontrib>Campbell, J. C.</creatorcontrib><creatorcontrib>Krishna, S.</creatorcontrib><title>Random alloy thick AlGaAsSb avalanche photodiodes on InP substrates</title><title>Applied physics letters</title><description>We demonstrate low noise random alloy (RA) Al0.85Ga0.15AsSb (hereafter AlGaAsSb) avalanche photodiodes (APDs) nearly lattice-matched to InP substrates. In contrast to digital alloy (DA), RAs are manufacturable due to the ease of growth. The 910 nm-thick RA AlGaAsSb was grown at a low temperature around 450 °C to mitigate phase separation by suppressing surface mobility of adatoms. The high quality of the RA AlGaAsSb material was verified by x-ray diffraction, Nomarski, and atomic force microscope images. Capacitance–voltage measurement found that the background doping concentration was 6–7
× 1014 cm−3, indicating very low impurity density in the RA AlGaAsSb material. Current–voltage measurements were carried out under dark condition and 455 nm laser illumination at room temperature. The breakdown occurs at −58 V. The dark current density at a gain of 10 was found to be 70 μA/cm2. This value is three orders of magnitude lower than previously reported DA AlAs0.56Sb0.44 APDs [Yi et al., Nat. Photonics 13, 683 (2019)], one order of magnitude lower than DA AlGaAsSb [Lee et al., Appl. Phys. Lett. 118, 081106 (2021)], and comparable to RA AlInAsSb APDs [Kodati et al., Appl. Phys. Lett. 118, 091101 (2021)]. In addition, the measured excess noise shows a low k (the ratio of impact ionization coefficients) of 0.01. These noise characteristics make the RA AlGaAsSb multiplier suitable for commercial applications, such as optical communication and LiDAR systems.</description><subject>Adatoms</subject><subject>Applied physics</subject><subject>Atomic force microscopes</subject><subject>Atomic force microscopy</subject><subject>Avalanche diodes</subject><subject>Dark current</subject><subject>Electrical measurement</subject><subject>Indium phosphides</subject><subject>Ionization coefficients</subject><subject>Lattice matching</subject><subject>Low noise</subject><subject>Low temperature</subject><subject>Noise</subject><subject>Optical communication</subject><subject>Phase separation</subject><subject>Photodiodes</subject><subject>Room temperature</subject><subject>Substrates</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtbqwX8Q8KSwNdnZfPRYilahoGjvYTabpVu3mzVJC_33rrTg3dMw8PAO8xJyy9mEMwmPYsKYVAXTZ2TEmVIZcK7PyYgxBpmcCn5JrmLcDKvIAUZk_oFd5bcU29YfaFo39ovO2gXO4mdJcY8tdnbtaL_2yVeNr1ykvqOv3TuNuzKmgMnFa3JRYxvdzWmOyer5aTV_yZZvi9f5bJlZyFXKUOK0hjKHqpISZKFKJ1DkKJmDAoBBgUw4a3Oh0ImprVWhS411WQuNSsGY3B1j--C_dy4ms_G70A0XTS5zDVoMfw_q_qhs8DEGV5s-NFsMB8OZ-a3ICHOqaLAPRxttkzA1vvsf3vvwB01f1fADTxpznw</recordid><startdate>20220214</startdate><enddate>20220214</enddate><creator>Lee, S.</creator><creator>Guo, B.</creator><creator>Kodati, S. H.</creator><creator>Jung, H.</creator><creator>Schwartz, M.</creator><creator>Jones, A. H.</creator><creator>Winslow, M.</creator><creator>Grein, C. H.</creator><creator>Ronningen, T. J.</creator><creator>Campbell, J. C.</creator><creator>Krishna, S.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6812-7647</orcidid><orcidid>https://orcid.org/0000-0002-5669-1555</orcidid><orcidid>https://orcid.org/0000-0002-3889-4893</orcidid><orcidid>https://orcid.org/0000-0002-5469-0794</orcidid></search><sort><creationdate>20220214</creationdate><title>Random alloy thick AlGaAsSb avalanche photodiodes on InP substrates</title><author>Lee, S. ; Guo, B. ; Kodati, S. H. ; Jung, H. ; Schwartz, M. ; Jones, A. H. ; Winslow, M. ; Grein, C. H. ; Ronningen, T. J. ; Campbell, J. C. ; Krishna, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-a6a9f3b23dd663647be5a52a60e3433034a05ecc257ae59cf748b8afbf58a773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adatoms</topic><topic>Applied physics</topic><topic>Atomic force microscopes</topic><topic>Atomic force microscopy</topic><topic>Avalanche diodes</topic><topic>Dark current</topic><topic>Electrical measurement</topic><topic>Indium phosphides</topic><topic>Ionization coefficients</topic><topic>Lattice matching</topic><topic>Low noise</topic><topic>Low temperature</topic><topic>Noise</topic><topic>Optical communication</topic><topic>Phase separation</topic><topic>Photodiodes</topic><topic>Room temperature</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, S.</creatorcontrib><creatorcontrib>Guo, B.</creatorcontrib><creatorcontrib>Kodati, S. H.</creatorcontrib><creatorcontrib>Jung, H.</creatorcontrib><creatorcontrib>Schwartz, M.</creatorcontrib><creatorcontrib>Jones, A. H.</creatorcontrib><creatorcontrib>Winslow, M.</creatorcontrib><creatorcontrib>Grein, C. H.</creatorcontrib><creatorcontrib>Ronningen, T. J.</creatorcontrib><creatorcontrib>Campbell, J. C.</creatorcontrib><creatorcontrib>Krishna, S.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, S.</au><au>Guo, B.</au><au>Kodati, S. H.</au><au>Jung, H.</au><au>Schwartz, M.</au><au>Jones, A. H.</au><au>Winslow, M.</au><au>Grein, C. H.</au><au>Ronningen, T. J.</au><au>Campbell, J. C.</au><au>Krishna, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random alloy thick AlGaAsSb avalanche photodiodes on InP substrates</atitle><jtitle>Applied physics letters</jtitle><date>2022-02-14</date><risdate>2022</risdate><volume>120</volume><issue>7</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We demonstrate low noise random alloy (RA) Al0.85Ga0.15AsSb (hereafter AlGaAsSb) avalanche photodiodes (APDs) nearly lattice-matched to InP substrates. In contrast to digital alloy (DA), RAs are manufacturable due to the ease of growth. The 910 nm-thick RA AlGaAsSb was grown at a low temperature around 450 °C to mitigate phase separation by suppressing surface mobility of adatoms. The high quality of the RA AlGaAsSb material was verified by x-ray diffraction, Nomarski, and atomic force microscope images. Capacitance–voltage measurement found that the background doping concentration was 6–7
× 1014 cm−3, indicating very low impurity density in the RA AlGaAsSb material. Current–voltage measurements were carried out under dark condition and 455 nm laser illumination at room temperature. The breakdown occurs at −58 V. The dark current density at a gain of 10 was found to be 70 μA/cm2. This value is three orders of magnitude lower than previously reported DA AlAs0.56Sb0.44 APDs [Yi et al., Nat. Photonics 13, 683 (2019)], one order of magnitude lower than DA AlGaAsSb [Lee et al., Appl. Phys. Lett. 118, 081106 (2021)], and comparable to RA AlInAsSb APDs [Kodati et al., Appl. Phys. Lett. 118, 091101 (2021)]. In addition, the measured excess noise shows a low k (the ratio of impact ionization coefficients) of 0.01. These noise characteristics make the RA AlGaAsSb multiplier suitable for commercial applications, such as optical communication and LiDAR systems.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0067408</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6812-7647</orcidid><orcidid>https://orcid.org/0000-0002-5669-1555</orcidid><orcidid>https://orcid.org/0000-0002-3889-4893</orcidid><orcidid>https://orcid.org/0000-0002-5469-0794</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2022-02, Vol.120 (7) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0067408 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Adatoms Applied physics Atomic force microscopes Atomic force microscopy Avalanche diodes Dark current Electrical measurement Indium phosphides Ionization coefficients Lattice matching Low noise Low temperature Noise Optical communication Phase separation Photodiodes Room temperature Substrates |
title | Random alloy thick AlGaAsSb avalanche photodiodes on InP substrates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T07%3A28%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20alloy%20thick%20AlGaAsSb%20avalanche%20photodiodes%20on%20InP%20substrates&rft.jtitle=Applied%20physics%20letters&rft.au=Lee,%20S.&rft.date=2022-02-14&rft.volume=120&rft.issue=7&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0067408&rft_dat=%3Cproquest_scita%3E2628385740%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628385740&rft_id=info:pmid/&rfr_iscdi=true |