Random alloy thick AlGaAsSb avalanche photodiodes on InP substrates

We demonstrate low noise random alloy (RA) Al0.85Ga0.15AsSb (hereafter AlGaAsSb) avalanche photodiodes (APDs) nearly lattice-matched to InP substrates. In contrast to digital alloy (DA), RAs are manufacturable due to the ease of growth. The 910 nm-thick RA AlGaAsSb was grown at a low temperature aro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2022-02, Vol.120 (7)
Hauptverfasser: Lee, S., Guo, B., Kodati, S. H., Jung, H., Schwartz, M., Jones, A. H., Winslow, M., Grein, C. H., Ronningen, T. J., Campbell, J. C., Krishna, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Applied physics letters
container_volume 120
creator Lee, S.
Guo, B.
Kodati, S. H.
Jung, H.
Schwartz, M.
Jones, A. H.
Winslow, M.
Grein, C. H.
Ronningen, T. J.
Campbell, J. C.
Krishna, S.
description We demonstrate low noise random alloy (RA) Al0.85Ga0.15AsSb (hereafter AlGaAsSb) avalanche photodiodes (APDs) nearly lattice-matched to InP substrates. In contrast to digital alloy (DA), RAs are manufacturable due to the ease of growth. The 910 nm-thick RA AlGaAsSb was grown at a low temperature around 450 °C to mitigate phase separation by suppressing surface mobility of adatoms. The high quality of the RA AlGaAsSb material was verified by x-ray diffraction, Nomarski, and atomic force microscope images. Capacitance–voltage measurement found that the background doping concentration was 6–7  × 1014 cm−3, indicating very low impurity density in the RA AlGaAsSb material. Current–voltage measurements were carried out under dark condition and 455 nm laser illumination at room temperature. The breakdown occurs at −58 V. The dark current density at a gain of 10 was found to be 70 μA/cm2. This value is three orders of magnitude lower than previously reported DA AlAs0.56Sb0.44 APDs [Yi et al., Nat. Photonics 13, 683 (2019)], one order of magnitude lower than DA AlGaAsSb [Lee et al., Appl. Phys. Lett. 118, 081106 (2021)], and comparable to RA AlInAsSb APDs [Kodati et al., Appl. Phys. Lett. 118, 091101 (2021)]. In addition, the measured excess noise shows a low k (the ratio of impact ionization coefficients) of 0.01. These noise characteristics make the RA AlGaAsSb multiplier suitable for commercial applications, such as optical communication and LiDAR systems.
doi_str_mv 10.1063/5.0067408
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0067408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628385740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-a6a9f3b23dd663647be5a52a60e3433034a05ecc257ae59cf748b8afbf58a773</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtbqwX8Q8KSwNdnZfPRYilahoGjvYTabpVu3mzVJC_33rrTg3dMw8PAO8xJyy9mEMwmPYsKYVAXTZ2TEmVIZcK7PyYgxBpmcCn5JrmLcDKvIAUZk_oFd5bcU29YfaFo39ovO2gXO4mdJcY8tdnbtaL_2yVeNr1ykvqOv3TuNuzKmgMnFa3JRYxvdzWmOyer5aTV_yZZvi9f5bJlZyFXKUOK0hjKHqpISZKFKJ1DkKJmDAoBBgUw4a3Oh0ImprVWhS411WQuNSsGY3B1j--C_dy4ms_G70A0XTS5zDVoMfw_q_qhs8DEGV5s-NFsMB8OZ-a3ICHOqaLAPRxttkzA1vvsf3vvwB01f1fADTxpznw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628385740</pqid></control><display><type>article</type><title>Random alloy thick AlGaAsSb avalanche photodiodes on InP substrates</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Lee, S. ; Guo, B. ; Kodati, S. H. ; Jung, H. ; Schwartz, M. ; Jones, A. H. ; Winslow, M. ; Grein, C. H. ; Ronningen, T. J. ; Campbell, J. C. ; Krishna, S.</creator><creatorcontrib>Lee, S. ; Guo, B. ; Kodati, S. H. ; Jung, H. ; Schwartz, M. ; Jones, A. H. ; Winslow, M. ; Grein, C. H. ; Ronningen, T. J. ; Campbell, J. C. ; Krishna, S.</creatorcontrib><description>We demonstrate low noise random alloy (RA) Al0.85Ga0.15AsSb (hereafter AlGaAsSb) avalanche photodiodes (APDs) nearly lattice-matched to InP substrates. In contrast to digital alloy (DA), RAs are manufacturable due to the ease of growth. The 910 nm-thick RA AlGaAsSb was grown at a low temperature around 450 °C to mitigate phase separation by suppressing surface mobility of adatoms. The high quality of the RA AlGaAsSb material was verified by x-ray diffraction, Nomarski, and atomic force microscope images. Capacitance–voltage measurement found that the background doping concentration was 6–7  × 1014 cm−3, indicating very low impurity density in the RA AlGaAsSb material. Current–voltage measurements were carried out under dark condition and 455 nm laser illumination at room temperature. The breakdown occurs at −58 V. The dark current density at a gain of 10 was found to be 70 μA/cm2. This value is three orders of magnitude lower than previously reported DA AlAs0.56Sb0.44 APDs [Yi et al., Nat. Photonics 13, 683 (2019)], one order of magnitude lower than DA AlGaAsSb [Lee et al., Appl. Phys. Lett. 118, 081106 (2021)], and comparable to RA AlInAsSb APDs [Kodati et al., Appl. Phys. Lett. 118, 091101 (2021)]. In addition, the measured excess noise shows a low k (the ratio of impact ionization coefficients) of 0.01. These noise characteristics make the RA AlGaAsSb multiplier suitable for commercial applications, such as optical communication and LiDAR systems.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0067408</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Adatoms ; Applied physics ; Atomic force microscopes ; Atomic force microscopy ; Avalanche diodes ; Dark current ; Electrical measurement ; Indium phosphides ; Ionization coefficients ; Lattice matching ; Low noise ; Low temperature ; Noise ; Optical communication ; Phase separation ; Photodiodes ; Room temperature ; Substrates</subject><ispartof>Applied physics letters, 2022-02, Vol.120 (7)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-a6a9f3b23dd663647be5a52a60e3433034a05ecc257ae59cf748b8afbf58a773</citedby><cites>FETCH-LOGICAL-c327t-a6a9f3b23dd663647be5a52a60e3433034a05ecc257ae59cf748b8afbf58a773</cites><orcidid>0000-0001-6812-7647 ; 0000-0002-5669-1555 ; 0000-0002-3889-4893 ; 0000-0002-5469-0794</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0067408$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,778,782,792,4500,27907,27908,76135</link.rule.ids></links><search><creatorcontrib>Lee, S.</creatorcontrib><creatorcontrib>Guo, B.</creatorcontrib><creatorcontrib>Kodati, S. H.</creatorcontrib><creatorcontrib>Jung, H.</creatorcontrib><creatorcontrib>Schwartz, M.</creatorcontrib><creatorcontrib>Jones, A. H.</creatorcontrib><creatorcontrib>Winslow, M.</creatorcontrib><creatorcontrib>Grein, C. H.</creatorcontrib><creatorcontrib>Ronningen, T. J.</creatorcontrib><creatorcontrib>Campbell, J. C.</creatorcontrib><creatorcontrib>Krishna, S.</creatorcontrib><title>Random alloy thick AlGaAsSb avalanche photodiodes on InP substrates</title><title>Applied physics letters</title><description>We demonstrate low noise random alloy (RA) Al0.85Ga0.15AsSb (hereafter AlGaAsSb) avalanche photodiodes (APDs) nearly lattice-matched to InP substrates. In contrast to digital alloy (DA), RAs are manufacturable due to the ease of growth. The 910 nm-thick RA AlGaAsSb was grown at a low temperature around 450 °C to mitigate phase separation by suppressing surface mobility of adatoms. The high quality of the RA AlGaAsSb material was verified by x-ray diffraction, Nomarski, and atomic force microscope images. Capacitance–voltage measurement found that the background doping concentration was 6–7  × 1014 cm−3, indicating very low impurity density in the RA AlGaAsSb material. Current–voltage measurements were carried out under dark condition and 455 nm laser illumination at room temperature. The breakdown occurs at −58 V. The dark current density at a gain of 10 was found to be 70 μA/cm2. This value is three orders of magnitude lower than previously reported DA AlAs0.56Sb0.44 APDs [Yi et al., Nat. Photonics 13, 683 (2019)], one order of magnitude lower than DA AlGaAsSb [Lee et al., Appl. Phys. Lett. 118, 081106 (2021)], and comparable to RA AlInAsSb APDs [Kodati et al., Appl. Phys. Lett. 118, 091101 (2021)]. In addition, the measured excess noise shows a low k (the ratio of impact ionization coefficients) of 0.01. These noise characteristics make the RA AlGaAsSb multiplier suitable for commercial applications, such as optical communication and LiDAR systems.</description><subject>Adatoms</subject><subject>Applied physics</subject><subject>Atomic force microscopes</subject><subject>Atomic force microscopy</subject><subject>Avalanche diodes</subject><subject>Dark current</subject><subject>Electrical measurement</subject><subject>Indium phosphides</subject><subject>Ionization coefficients</subject><subject>Lattice matching</subject><subject>Low noise</subject><subject>Low temperature</subject><subject>Noise</subject><subject>Optical communication</subject><subject>Phase separation</subject><subject>Photodiodes</subject><subject>Room temperature</subject><subject>Substrates</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtbqwX8Q8KSwNdnZfPRYilahoGjvYTabpVu3mzVJC_33rrTg3dMw8PAO8xJyy9mEMwmPYsKYVAXTZ2TEmVIZcK7PyYgxBpmcCn5JrmLcDKvIAUZk_oFd5bcU29YfaFo39ovO2gXO4mdJcY8tdnbtaL_2yVeNr1ykvqOv3TuNuzKmgMnFa3JRYxvdzWmOyer5aTV_yZZvi9f5bJlZyFXKUOK0hjKHqpISZKFKJ1DkKJmDAoBBgUw4a3Oh0ImprVWhS411WQuNSsGY3B1j--C_dy4ms_G70A0XTS5zDVoMfw_q_qhs8DEGV5s-NFsMB8OZ-a3ICHOqaLAPRxttkzA1vvsf3vvwB01f1fADTxpznw</recordid><startdate>20220214</startdate><enddate>20220214</enddate><creator>Lee, S.</creator><creator>Guo, B.</creator><creator>Kodati, S. H.</creator><creator>Jung, H.</creator><creator>Schwartz, M.</creator><creator>Jones, A. H.</creator><creator>Winslow, M.</creator><creator>Grein, C. H.</creator><creator>Ronningen, T. J.</creator><creator>Campbell, J. C.</creator><creator>Krishna, S.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6812-7647</orcidid><orcidid>https://orcid.org/0000-0002-5669-1555</orcidid><orcidid>https://orcid.org/0000-0002-3889-4893</orcidid><orcidid>https://orcid.org/0000-0002-5469-0794</orcidid></search><sort><creationdate>20220214</creationdate><title>Random alloy thick AlGaAsSb avalanche photodiodes on InP substrates</title><author>Lee, S. ; Guo, B. ; Kodati, S. H. ; Jung, H. ; Schwartz, M. ; Jones, A. H. ; Winslow, M. ; Grein, C. H. ; Ronningen, T. J. ; Campbell, J. C. ; Krishna, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-a6a9f3b23dd663647be5a52a60e3433034a05ecc257ae59cf748b8afbf58a773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adatoms</topic><topic>Applied physics</topic><topic>Atomic force microscopes</topic><topic>Atomic force microscopy</topic><topic>Avalanche diodes</topic><topic>Dark current</topic><topic>Electrical measurement</topic><topic>Indium phosphides</topic><topic>Ionization coefficients</topic><topic>Lattice matching</topic><topic>Low noise</topic><topic>Low temperature</topic><topic>Noise</topic><topic>Optical communication</topic><topic>Phase separation</topic><topic>Photodiodes</topic><topic>Room temperature</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, S.</creatorcontrib><creatorcontrib>Guo, B.</creatorcontrib><creatorcontrib>Kodati, S. H.</creatorcontrib><creatorcontrib>Jung, H.</creatorcontrib><creatorcontrib>Schwartz, M.</creatorcontrib><creatorcontrib>Jones, A. H.</creatorcontrib><creatorcontrib>Winslow, M.</creatorcontrib><creatorcontrib>Grein, C. H.</creatorcontrib><creatorcontrib>Ronningen, T. J.</creatorcontrib><creatorcontrib>Campbell, J. C.</creatorcontrib><creatorcontrib>Krishna, S.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, S.</au><au>Guo, B.</au><au>Kodati, S. H.</au><au>Jung, H.</au><au>Schwartz, M.</au><au>Jones, A. H.</au><au>Winslow, M.</au><au>Grein, C. H.</au><au>Ronningen, T. J.</au><au>Campbell, J. C.</au><au>Krishna, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random alloy thick AlGaAsSb avalanche photodiodes on InP substrates</atitle><jtitle>Applied physics letters</jtitle><date>2022-02-14</date><risdate>2022</risdate><volume>120</volume><issue>7</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We demonstrate low noise random alloy (RA) Al0.85Ga0.15AsSb (hereafter AlGaAsSb) avalanche photodiodes (APDs) nearly lattice-matched to InP substrates. In contrast to digital alloy (DA), RAs are manufacturable due to the ease of growth. The 910 nm-thick RA AlGaAsSb was grown at a low temperature around 450 °C to mitigate phase separation by suppressing surface mobility of adatoms. The high quality of the RA AlGaAsSb material was verified by x-ray diffraction, Nomarski, and atomic force microscope images. Capacitance–voltage measurement found that the background doping concentration was 6–7  × 1014 cm−3, indicating very low impurity density in the RA AlGaAsSb material. Current–voltage measurements were carried out under dark condition and 455 nm laser illumination at room temperature. The breakdown occurs at −58 V. The dark current density at a gain of 10 was found to be 70 μA/cm2. This value is three orders of magnitude lower than previously reported DA AlAs0.56Sb0.44 APDs [Yi et al., Nat. Photonics 13, 683 (2019)], one order of magnitude lower than DA AlGaAsSb [Lee et al., Appl. Phys. Lett. 118, 081106 (2021)], and comparable to RA AlInAsSb APDs [Kodati et al., Appl. Phys. Lett. 118, 091101 (2021)]. In addition, the measured excess noise shows a low k (the ratio of impact ionization coefficients) of 0.01. These noise characteristics make the RA AlGaAsSb multiplier suitable for commercial applications, such as optical communication and LiDAR systems.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0067408</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6812-7647</orcidid><orcidid>https://orcid.org/0000-0002-5669-1555</orcidid><orcidid>https://orcid.org/0000-0002-3889-4893</orcidid><orcidid>https://orcid.org/0000-0002-5469-0794</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2022-02, Vol.120 (7)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_5_0067408
source AIP Journals Complete; Alma/SFX Local Collection
subjects Adatoms
Applied physics
Atomic force microscopes
Atomic force microscopy
Avalanche diodes
Dark current
Electrical measurement
Indium phosphides
Ionization coefficients
Lattice matching
Low noise
Low temperature
Noise
Optical communication
Phase separation
Photodiodes
Room temperature
Substrates
title Random alloy thick AlGaAsSb avalanche photodiodes on InP substrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T07%3A28%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20alloy%20thick%20AlGaAsSb%20avalanche%20photodiodes%20on%20InP%20substrates&rft.jtitle=Applied%20physics%20letters&rft.au=Lee,%20S.&rft.date=2022-02-14&rft.volume=120&rft.issue=7&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0067408&rft_dat=%3Cproquest_scita%3E2628385740%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628385740&rft_id=info:pmid/&rfr_iscdi=true