Prediction of Ti-Zr-Nb-Ta high-entropy alloys with desirable hardness by combining machine learning and experimental data

Traditional alloy design depends heavily on “trial and error” experiments, which are neither cost-effective nor efficient, particularly for the development of high-entropy alloys (HEAs) using a broad composition space. Herein, we combine a machine learning (ML) model with phase diagram calculations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2021-11, Vol.119 (20)
Hauptverfasser: Sun, Yan, Lu, Zhichao, Liu, Xiongjun, Du, Qing, Xie, Huamin, Lv, Jiecheng, Song, Ruoxuan, Wu, Yuan, Wang, Hui, Jiang, Suihe, Lu, Zhaoping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page
container_title Applied physics letters
container_volume 119
creator Sun, Yan
Lu, Zhichao
Liu, Xiongjun
Du, Qing
Xie, Huamin
Lv, Jiecheng
Song, Ruoxuan
Wu, Yuan
Wang, Hui
Jiang, Suihe
Lu, Zhaoping
description Traditional alloy design depends heavily on “trial and error” experiments, which are neither cost-effective nor efficient, particularly for the development of high-entropy alloys (HEAs) using a broad composition space. Herein, we combine a machine learning (ML) model with phase diagram calculations (CALPHAD) to design Ti-Zr-Nb-Ta refractory HEAs with a desirable hardness. The extreme gradient boosting (XGBoost) algorithm is used to train the ML model based on the Ti-Zr-Nb-Ta HEA hardness dataset from CALPHAD-assisted experiments. As a result, the most important features (i.e., the Ta content, melting point, and entropy of mixing) are determined via feature selection and model optimization. Moreover, the high performance of the ML model is validated experimentally, and the prediction accuracy reaches 97.8%. This work provides not only an interpretable ML model that can be used to predict the hardness of Ti-Zr-Nb-Ta HEAs but also feasible guidance for the development of HEAs with desirable hardness.
doi_str_mv 10.1063/5.0065303
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0065303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597906255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-f52c29105ed559e4c89f75dc9691dc4d5cb8c436d3e6783ec88b737bf26dcc893</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtaPg_8g4EkhmmyaZHOU4heIeqgXLyGbZLsp22RNtur-e7e24N3TMMPDzPACcEbwFcGcXrMrjDmjmO6BCcFCIEpIuQ8mGGOKuGTkEBzlvBxbVlA6AcNrctab3scAYw3nHr0n9FyhuYaNXzTIhT7FboC6beOQ4ZfvG2hd9klXrYONTja4nGE1QBNXlQ8-LOBKm8YHB1un0-9ABwvdd-eSX437dAut7vUJOKh1m93prh6Dt7vb-ewBPb3cP85unpChhehRzQpTSIKZs4xJNzWlrAWzRnJJrJlaZqrSTCm31HFRUmfKshJUVHXBrRkxPQbn271dih9rl3u1jOsUxpOqYFJIzAvGRnWxVSbFnJOrVTd-q9OgCFabZBVTu2RHe7m12fheb6L7H_6M6Q-qztb0BykgiDI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597906255</pqid></control><display><type>article</type><title>Prediction of Ti-Zr-Nb-Ta high-entropy alloys with desirable hardness by combining machine learning and experimental data</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Sun, Yan ; Lu, Zhichao ; Liu, Xiongjun ; Du, Qing ; Xie, Huamin ; Lv, Jiecheng ; Song, Ruoxuan ; Wu, Yuan ; Wang, Hui ; Jiang, Suihe ; Lu, Zhaoping</creator><creatorcontrib>Sun, Yan ; Lu, Zhichao ; Liu, Xiongjun ; Du, Qing ; Xie, Huamin ; Lv, Jiecheng ; Song, Ruoxuan ; Wu, Yuan ; Wang, Hui ; Jiang, Suihe ; Lu, Zhaoping</creatorcontrib><description>Traditional alloy design depends heavily on “trial and error” experiments, which are neither cost-effective nor efficient, particularly for the development of high-entropy alloys (HEAs) using a broad composition space. Herein, we combine a machine learning (ML) model with phase diagram calculations (CALPHAD) to design Ti-Zr-Nb-Ta refractory HEAs with a desirable hardness. The extreme gradient boosting (XGBoost) algorithm is used to train the ML model based on the Ti-Zr-Nb-Ta HEA hardness dataset from CALPHAD-assisted experiments. As a result, the most important features (i.e., the Ta content, melting point, and entropy of mixing) are determined via feature selection and model optimization. Moreover, the high performance of the ML model is validated experimentally, and the prediction accuracy reaches 97.8%. This work provides not only an interpretable ML model that can be used to predict the hardness of Ti-Zr-Nb-Ta HEAs but also feasible guidance for the development of HEAs with desirable hardness.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0065303</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Alloy development ; Applied physics ; Entropy ; Hardness ; High entropy alloys ; Machine learning ; Mathematical models ; Melting points ; Niobium ; Optimization ; Phase diagrams ; Tantalum ; Zirconium</subject><ispartof>Applied physics letters, 2021-11, Vol.119 (20)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-f52c29105ed559e4c89f75dc9691dc4d5cb8c436d3e6783ec88b737bf26dcc893</citedby><cites>FETCH-LOGICAL-c327t-f52c29105ed559e4c89f75dc9691dc4d5cb8c436d3e6783ec88b737bf26dcc893</cites><orcidid>0000-0002-5541-3860 ; 0000-0002-1663-4636 ; 0000-0002-9089-628X ; 0000-0003-1463-8948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0065303$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,4513,27925,27926,76385</link.rule.ids></links><search><creatorcontrib>Sun, Yan</creatorcontrib><creatorcontrib>Lu, Zhichao</creatorcontrib><creatorcontrib>Liu, Xiongjun</creatorcontrib><creatorcontrib>Du, Qing</creatorcontrib><creatorcontrib>Xie, Huamin</creatorcontrib><creatorcontrib>Lv, Jiecheng</creatorcontrib><creatorcontrib>Song, Ruoxuan</creatorcontrib><creatorcontrib>Wu, Yuan</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Jiang, Suihe</creatorcontrib><creatorcontrib>Lu, Zhaoping</creatorcontrib><title>Prediction of Ti-Zr-Nb-Ta high-entropy alloys with desirable hardness by combining machine learning and experimental data</title><title>Applied physics letters</title><description>Traditional alloy design depends heavily on “trial and error” experiments, which are neither cost-effective nor efficient, particularly for the development of high-entropy alloys (HEAs) using a broad composition space. Herein, we combine a machine learning (ML) model with phase diagram calculations (CALPHAD) to design Ti-Zr-Nb-Ta refractory HEAs with a desirable hardness. The extreme gradient boosting (XGBoost) algorithm is used to train the ML model based on the Ti-Zr-Nb-Ta HEA hardness dataset from CALPHAD-assisted experiments. As a result, the most important features (i.e., the Ta content, melting point, and entropy of mixing) are determined via feature selection and model optimization. Moreover, the high performance of the ML model is validated experimentally, and the prediction accuracy reaches 97.8%. This work provides not only an interpretable ML model that can be used to predict the hardness of Ti-Zr-Nb-Ta HEAs but also feasible guidance for the development of HEAs with desirable hardness.</description><subject>Algorithms</subject><subject>Alloy development</subject><subject>Applied physics</subject><subject>Entropy</subject><subject>Hardness</subject><subject>High entropy alloys</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Melting points</subject><subject>Niobium</subject><subject>Optimization</subject><subject>Phase diagrams</subject><subject>Tantalum</subject><subject>Zirconium</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtaPg_8g4EkhmmyaZHOU4heIeqgXLyGbZLsp22RNtur-e7e24N3TMMPDzPACcEbwFcGcXrMrjDmjmO6BCcFCIEpIuQ8mGGOKuGTkEBzlvBxbVlA6AcNrctab3scAYw3nHr0n9FyhuYaNXzTIhT7FboC6beOQ4ZfvG2hd9klXrYONTja4nGE1QBNXlQ8-LOBKm8YHB1un0-9ABwvdd-eSX437dAut7vUJOKh1m93prh6Dt7vb-ewBPb3cP85unpChhehRzQpTSIKZs4xJNzWlrAWzRnJJrJlaZqrSTCm31HFRUmfKshJUVHXBrRkxPQbn271dih9rl3u1jOsUxpOqYFJIzAvGRnWxVSbFnJOrVTd-q9OgCFabZBVTu2RHe7m12fheb6L7H_6M6Q-qztb0BykgiDI</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>Sun, Yan</creator><creator>Lu, Zhichao</creator><creator>Liu, Xiongjun</creator><creator>Du, Qing</creator><creator>Xie, Huamin</creator><creator>Lv, Jiecheng</creator><creator>Song, Ruoxuan</creator><creator>Wu, Yuan</creator><creator>Wang, Hui</creator><creator>Jiang, Suihe</creator><creator>Lu, Zhaoping</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5541-3860</orcidid><orcidid>https://orcid.org/0000-0002-1663-4636</orcidid><orcidid>https://orcid.org/0000-0002-9089-628X</orcidid><orcidid>https://orcid.org/0000-0003-1463-8948</orcidid></search><sort><creationdate>20211115</creationdate><title>Prediction of Ti-Zr-Nb-Ta high-entropy alloys with desirable hardness by combining machine learning and experimental data</title><author>Sun, Yan ; Lu, Zhichao ; Liu, Xiongjun ; Du, Qing ; Xie, Huamin ; Lv, Jiecheng ; Song, Ruoxuan ; Wu, Yuan ; Wang, Hui ; Jiang, Suihe ; Lu, Zhaoping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-f52c29105ed559e4c89f75dc9691dc4d5cb8c436d3e6783ec88b737bf26dcc893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Alloy development</topic><topic>Applied physics</topic><topic>Entropy</topic><topic>Hardness</topic><topic>High entropy alloys</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Melting points</topic><topic>Niobium</topic><topic>Optimization</topic><topic>Phase diagrams</topic><topic>Tantalum</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yan</creatorcontrib><creatorcontrib>Lu, Zhichao</creatorcontrib><creatorcontrib>Liu, Xiongjun</creatorcontrib><creatorcontrib>Du, Qing</creatorcontrib><creatorcontrib>Xie, Huamin</creatorcontrib><creatorcontrib>Lv, Jiecheng</creatorcontrib><creatorcontrib>Song, Ruoxuan</creatorcontrib><creatorcontrib>Wu, Yuan</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Jiang, Suihe</creatorcontrib><creatorcontrib>Lu, Zhaoping</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yan</au><au>Lu, Zhichao</au><au>Liu, Xiongjun</au><au>Du, Qing</au><au>Xie, Huamin</au><au>Lv, Jiecheng</au><au>Song, Ruoxuan</au><au>Wu, Yuan</au><au>Wang, Hui</au><au>Jiang, Suihe</au><au>Lu, Zhaoping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Ti-Zr-Nb-Ta high-entropy alloys with desirable hardness by combining machine learning and experimental data</atitle><jtitle>Applied physics letters</jtitle><date>2021-11-15</date><risdate>2021</risdate><volume>119</volume><issue>20</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Traditional alloy design depends heavily on “trial and error” experiments, which are neither cost-effective nor efficient, particularly for the development of high-entropy alloys (HEAs) using a broad composition space. Herein, we combine a machine learning (ML) model with phase diagram calculations (CALPHAD) to design Ti-Zr-Nb-Ta refractory HEAs with a desirable hardness. The extreme gradient boosting (XGBoost) algorithm is used to train the ML model based on the Ti-Zr-Nb-Ta HEA hardness dataset from CALPHAD-assisted experiments. As a result, the most important features (i.e., the Ta content, melting point, and entropy of mixing) are determined via feature selection and model optimization. Moreover, the high performance of the ML model is validated experimentally, and the prediction accuracy reaches 97.8%. This work provides not only an interpretable ML model that can be used to predict the hardness of Ti-Zr-Nb-Ta HEAs but also feasible guidance for the development of HEAs with desirable hardness.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0065303</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5541-3860</orcidid><orcidid>https://orcid.org/0000-0002-1663-4636</orcidid><orcidid>https://orcid.org/0000-0002-9089-628X</orcidid><orcidid>https://orcid.org/0000-0003-1463-8948</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2021-11, Vol.119 (20)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_5_0065303
source AIP Journals Complete; Alma/SFX Local Collection
subjects Algorithms
Alloy development
Applied physics
Entropy
Hardness
High entropy alloys
Machine learning
Mathematical models
Melting points
Niobium
Optimization
Phase diagrams
Tantalum
Zirconium
title Prediction of Ti-Zr-Nb-Ta high-entropy alloys with desirable hardness by combining machine learning and experimental data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T13%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Ti-Zr-Nb-Ta%20high-entropy%20alloys%20with%20desirable%20hardness%20by%20combining%20machine%20learning%20and%20experimental%20data&rft.jtitle=Applied%20physics%20letters&rft.au=Sun,%20Yan&rft.date=2021-11-15&rft.volume=119&rft.issue=20&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0065303&rft_dat=%3Cproquest_scita%3E2597906255%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2597906255&rft_id=info:pmid/&rfr_iscdi=true