Prediction of Ti-Zr-Nb-Ta high-entropy alloys with desirable hardness by combining machine learning and experimental data
Traditional alloy design depends heavily on “trial and error” experiments, which are neither cost-effective nor efficient, particularly for the development of high-entropy alloys (HEAs) using a broad composition space. Herein, we combine a machine learning (ML) model with phase diagram calculations...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2021-11, Vol.119 (20) |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 119 |
creator | Sun, Yan Lu, Zhichao Liu, Xiongjun Du, Qing Xie, Huamin Lv, Jiecheng Song, Ruoxuan Wu, Yuan Wang, Hui Jiang, Suihe Lu, Zhaoping |
description | Traditional alloy design depends heavily on “trial and error” experiments, which are neither cost-effective nor efficient, particularly for the development of high-entropy alloys (HEAs) using a broad composition space. Herein, we combine a machine learning (ML) model with phase diagram calculations (CALPHAD) to design Ti-Zr-Nb-Ta refractory HEAs with a desirable hardness. The extreme gradient boosting (XGBoost) algorithm is used to train the ML model based on the Ti-Zr-Nb-Ta HEA hardness dataset from CALPHAD-assisted experiments. As a result, the most important features (i.e., the Ta content, melting point, and entropy of mixing) are determined via feature selection and model optimization. Moreover, the high performance of the ML model is validated experimentally, and the prediction accuracy reaches 97.8%. This work provides not only an interpretable ML model that can be used to predict the hardness of Ti-Zr-Nb-Ta HEAs but also feasible guidance for the development of HEAs with desirable hardness. |
doi_str_mv | 10.1063/5.0065303 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0065303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597906255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-f52c29105ed559e4c89f75dc9691dc4d5cb8c436d3e6783ec88b737bf26dcc893</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtaPg_8g4EkhmmyaZHOU4heIeqgXLyGbZLsp22RNtur-e7e24N3TMMPDzPACcEbwFcGcXrMrjDmjmO6BCcFCIEpIuQ8mGGOKuGTkEBzlvBxbVlA6AcNrctab3scAYw3nHr0n9FyhuYaNXzTIhT7FboC6beOQ4ZfvG2hd9klXrYONTja4nGE1QBNXlQ8-LOBKm8YHB1un0-9ABwvdd-eSX437dAut7vUJOKh1m93prh6Dt7vb-ewBPb3cP85unpChhehRzQpTSIKZs4xJNzWlrAWzRnJJrJlaZqrSTCm31HFRUmfKshJUVHXBrRkxPQbn271dih9rl3u1jOsUxpOqYFJIzAvGRnWxVSbFnJOrVTd-q9OgCFabZBVTu2RHe7m12fheb6L7H_6M6Q-qztb0BykgiDI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597906255</pqid></control><display><type>article</type><title>Prediction of Ti-Zr-Nb-Ta high-entropy alloys with desirable hardness by combining machine learning and experimental data</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Sun, Yan ; Lu, Zhichao ; Liu, Xiongjun ; Du, Qing ; Xie, Huamin ; Lv, Jiecheng ; Song, Ruoxuan ; Wu, Yuan ; Wang, Hui ; Jiang, Suihe ; Lu, Zhaoping</creator><creatorcontrib>Sun, Yan ; Lu, Zhichao ; Liu, Xiongjun ; Du, Qing ; Xie, Huamin ; Lv, Jiecheng ; Song, Ruoxuan ; Wu, Yuan ; Wang, Hui ; Jiang, Suihe ; Lu, Zhaoping</creatorcontrib><description>Traditional alloy design depends heavily on “trial and error” experiments, which are neither cost-effective nor efficient, particularly for the development of high-entropy alloys (HEAs) using a broad composition space. Herein, we combine a machine learning (ML) model with phase diagram calculations (CALPHAD) to design Ti-Zr-Nb-Ta refractory HEAs with a desirable hardness. The extreme gradient boosting (XGBoost) algorithm is used to train the ML model based on the Ti-Zr-Nb-Ta HEA hardness dataset from CALPHAD-assisted experiments. As a result, the most important features (i.e., the Ta content, melting point, and entropy of mixing) are determined via feature selection and model optimization. Moreover, the high performance of the ML model is validated experimentally, and the prediction accuracy reaches 97.8%. This work provides not only an interpretable ML model that can be used to predict the hardness of Ti-Zr-Nb-Ta HEAs but also feasible guidance for the development of HEAs with desirable hardness.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0065303</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Alloy development ; Applied physics ; Entropy ; Hardness ; High entropy alloys ; Machine learning ; Mathematical models ; Melting points ; Niobium ; Optimization ; Phase diagrams ; Tantalum ; Zirconium</subject><ispartof>Applied physics letters, 2021-11, Vol.119 (20)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-f52c29105ed559e4c89f75dc9691dc4d5cb8c436d3e6783ec88b737bf26dcc893</citedby><cites>FETCH-LOGICAL-c327t-f52c29105ed559e4c89f75dc9691dc4d5cb8c436d3e6783ec88b737bf26dcc893</cites><orcidid>0000-0002-5541-3860 ; 0000-0002-1663-4636 ; 0000-0002-9089-628X ; 0000-0003-1463-8948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0065303$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,4513,27925,27926,76385</link.rule.ids></links><search><creatorcontrib>Sun, Yan</creatorcontrib><creatorcontrib>Lu, Zhichao</creatorcontrib><creatorcontrib>Liu, Xiongjun</creatorcontrib><creatorcontrib>Du, Qing</creatorcontrib><creatorcontrib>Xie, Huamin</creatorcontrib><creatorcontrib>Lv, Jiecheng</creatorcontrib><creatorcontrib>Song, Ruoxuan</creatorcontrib><creatorcontrib>Wu, Yuan</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Jiang, Suihe</creatorcontrib><creatorcontrib>Lu, Zhaoping</creatorcontrib><title>Prediction of Ti-Zr-Nb-Ta high-entropy alloys with desirable hardness by combining machine learning and experimental data</title><title>Applied physics letters</title><description>Traditional alloy design depends heavily on “trial and error” experiments, which are neither cost-effective nor efficient, particularly for the development of high-entropy alloys (HEAs) using a broad composition space. Herein, we combine a machine learning (ML) model with phase diagram calculations (CALPHAD) to design Ti-Zr-Nb-Ta refractory HEAs with a desirable hardness. The extreme gradient boosting (XGBoost) algorithm is used to train the ML model based on the Ti-Zr-Nb-Ta HEA hardness dataset from CALPHAD-assisted experiments. As a result, the most important features (i.e., the Ta content, melting point, and entropy of mixing) are determined via feature selection and model optimization. Moreover, the high performance of the ML model is validated experimentally, and the prediction accuracy reaches 97.8%. This work provides not only an interpretable ML model that can be used to predict the hardness of Ti-Zr-Nb-Ta HEAs but also feasible guidance for the development of HEAs with desirable hardness.</description><subject>Algorithms</subject><subject>Alloy development</subject><subject>Applied physics</subject><subject>Entropy</subject><subject>Hardness</subject><subject>High entropy alloys</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Melting points</subject><subject>Niobium</subject><subject>Optimization</subject><subject>Phase diagrams</subject><subject>Tantalum</subject><subject>Zirconium</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtaPg_8g4EkhmmyaZHOU4heIeqgXLyGbZLsp22RNtur-e7e24N3TMMPDzPACcEbwFcGcXrMrjDmjmO6BCcFCIEpIuQ8mGGOKuGTkEBzlvBxbVlA6AcNrctab3scAYw3nHr0n9FyhuYaNXzTIhT7FboC6beOQ4ZfvG2hd9klXrYONTja4nGE1QBNXlQ8-LOBKm8YHB1un0-9ABwvdd-eSX437dAut7vUJOKh1m93prh6Dt7vb-ewBPb3cP85unpChhehRzQpTSIKZs4xJNzWlrAWzRnJJrJlaZqrSTCm31HFRUmfKshJUVHXBrRkxPQbn271dih9rl3u1jOsUxpOqYFJIzAvGRnWxVSbFnJOrVTd-q9OgCFabZBVTu2RHe7m12fheb6L7H_6M6Q-qztb0BykgiDI</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>Sun, Yan</creator><creator>Lu, Zhichao</creator><creator>Liu, Xiongjun</creator><creator>Du, Qing</creator><creator>Xie, Huamin</creator><creator>Lv, Jiecheng</creator><creator>Song, Ruoxuan</creator><creator>Wu, Yuan</creator><creator>Wang, Hui</creator><creator>Jiang, Suihe</creator><creator>Lu, Zhaoping</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5541-3860</orcidid><orcidid>https://orcid.org/0000-0002-1663-4636</orcidid><orcidid>https://orcid.org/0000-0002-9089-628X</orcidid><orcidid>https://orcid.org/0000-0003-1463-8948</orcidid></search><sort><creationdate>20211115</creationdate><title>Prediction of Ti-Zr-Nb-Ta high-entropy alloys with desirable hardness by combining machine learning and experimental data</title><author>Sun, Yan ; Lu, Zhichao ; Liu, Xiongjun ; Du, Qing ; Xie, Huamin ; Lv, Jiecheng ; Song, Ruoxuan ; Wu, Yuan ; Wang, Hui ; Jiang, Suihe ; Lu, Zhaoping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-f52c29105ed559e4c89f75dc9691dc4d5cb8c436d3e6783ec88b737bf26dcc893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Alloy development</topic><topic>Applied physics</topic><topic>Entropy</topic><topic>Hardness</topic><topic>High entropy alloys</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Melting points</topic><topic>Niobium</topic><topic>Optimization</topic><topic>Phase diagrams</topic><topic>Tantalum</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yan</creatorcontrib><creatorcontrib>Lu, Zhichao</creatorcontrib><creatorcontrib>Liu, Xiongjun</creatorcontrib><creatorcontrib>Du, Qing</creatorcontrib><creatorcontrib>Xie, Huamin</creatorcontrib><creatorcontrib>Lv, Jiecheng</creatorcontrib><creatorcontrib>Song, Ruoxuan</creatorcontrib><creatorcontrib>Wu, Yuan</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Jiang, Suihe</creatorcontrib><creatorcontrib>Lu, Zhaoping</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yan</au><au>Lu, Zhichao</au><au>Liu, Xiongjun</au><au>Du, Qing</au><au>Xie, Huamin</au><au>Lv, Jiecheng</au><au>Song, Ruoxuan</au><au>Wu, Yuan</au><au>Wang, Hui</au><au>Jiang, Suihe</au><au>Lu, Zhaoping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Ti-Zr-Nb-Ta high-entropy alloys with desirable hardness by combining machine learning and experimental data</atitle><jtitle>Applied physics letters</jtitle><date>2021-11-15</date><risdate>2021</risdate><volume>119</volume><issue>20</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Traditional alloy design depends heavily on “trial and error” experiments, which are neither cost-effective nor efficient, particularly for the development of high-entropy alloys (HEAs) using a broad composition space. Herein, we combine a machine learning (ML) model with phase diagram calculations (CALPHAD) to design Ti-Zr-Nb-Ta refractory HEAs with a desirable hardness. The extreme gradient boosting (XGBoost) algorithm is used to train the ML model based on the Ti-Zr-Nb-Ta HEA hardness dataset from CALPHAD-assisted experiments. As a result, the most important features (i.e., the Ta content, melting point, and entropy of mixing) are determined via feature selection and model optimization. Moreover, the high performance of the ML model is validated experimentally, and the prediction accuracy reaches 97.8%. This work provides not only an interpretable ML model that can be used to predict the hardness of Ti-Zr-Nb-Ta HEAs but also feasible guidance for the development of HEAs with desirable hardness.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0065303</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5541-3860</orcidid><orcidid>https://orcid.org/0000-0002-1663-4636</orcidid><orcidid>https://orcid.org/0000-0002-9089-628X</orcidid><orcidid>https://orcid.org/0000-0003-1463-8948</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2021-11, Vol.119 (20) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0065303 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Algorithms Alloy development Applied physics Entropy Hardness High entropy alloys Machine learning Mathematical models Melting points Niobium Optimization Phase diagrams Tantalum Zirconium |
title | Prediction of Ti-Zr-Nb-Ta high-entropy alloys with desirable hardness by combining machine learning and experimental data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T13%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Ti-Zr-Nb-Ta%20high-entropy%20alloys%20with%20desirable%20hardness%20by%20combining%20machine%20learning%20and%20experimental%20data&rft.jtitle=Applied%20physics%20letters&rft.au=Sun,%20Yan&rft.date=2021-11-15&rft.volume=119&rft.issue=20&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0065303&rft_dat=%3Cproquest_scita%3E2597906255%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2597906255&rft_id=info:pmid/&rfr_iscdi=true |