Instability of cumulation in converging cylindrical shock wave

The conditions of linear instability for a converging cylindrical shock wave in an arbitrary inviscid medium are obtained. The initial continuous cylindrical symmetry of the shock wave front is exchanged on a discrete symmetry that is determined by the most unstable small azimuthal dimensionless wav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2021-09, Vol.33 (9)
1. Verfasser: Chefranov, Sergey G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Physics of fluids (1994)
container_volume 33
creator Chefranov, Sergey G.
description The conditions of linear instability for a converging cylindrical shock wave in an arbitrary inviscid medium are obtained. The initial continuous cylindrical symmetry of the shock wave front is exchanged on a discrete symmetry that is determined by the most unstable small azimuthal dimensionless wave numbers 0 < k < k t h < 1 of corrugation perturbations. Due to the long azimuthal wavelengths ( λ = 2 π R s 0 / k, R s 0—the radius of the shock wave) of perturbations, the shape of the resulting shock wave front is not changed significantly, but the corresponding restriction of the internal energy cumulation can be caused by the intensification of the rotation of the medium behind the front. The instability and the restriction of cumulation are also possible in the case of the exponential rapid growth of the one-dimensional perturbations with k = 0, when the shape of the shock front is not changed at all. The correspondence of present theory to the experimental and simulation data on underwater electrical explosion is considered.
doi_str_mv 10.1063/5.0065017
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0065017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577189312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-5cf2235ad782614ecc9a1a1a6deccf9346721975b6f13e73522af22492e1cc233</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsHv0HAk8LWZNIkzUWQ4p9CwYueQ5rN1tRtUpPdyn57t27PMof3Dr95wzyErimZUCLYPZ8QIjih8gSNKJmpQgohTg9ekkIIRs_RRc4bQghTIEboYRFyY1a-9k2HY4Vtu21r0_gYsA_YxrB3ae3DGtuu9qFM3poa589ov_CP2btLdFaZOruro47Rx_PT-_y1WL69LOaPy8KCgqbgtgJg3JRyBoJOnbXK0H5E2dtKsamQQJXkK1FR5iTjAKbfmCpw1FpgbIxuhtxdit-ty43exDaF_qQGLiWdKUahp24HyqaYc3KV3iW_NanTlOhDPZrrYz09ezew2frm7-F_4F8p5WOl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577189312</pqid></control><display><type>article</type><title>Instability of cumulation in converging cylindrical shock wave</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Chefranov, Sergey G.</creator><creatorcontrib>Chefranov, Sergey G.</creatorcontrib><description>The conditions of linear instability for a converging cylindrical shock wave in an arbitrary inviscid medium are obtained. The initial continuous cylindrical symmetry of the shock wave front is exchanged on a discrete symmetry that is determined by the most unstable small azimuthal dimensionless wave numbers 0 &lt; k &lt; k t h &lt; 1 of corrugation perturbations. Due to the long azimuthal wavelengths ( λ = 2 π R s 0 / k, R s 0—the radius of the shock wave) of perturbations, the shape of the resulting shock wave front is not changed significantly, but the corresponding restriction of the internal energy cumulation can be caused by the intensification of the rotation of the medium behind the front. The instability and the restriction of cumulation are also possible in the case of the exponential rapid growth of the one-dimensional perturbations with k = 0, when the shape of the shock front is not changed at all. The correspondence of present theory to the experimental and simulation data on underwater electrical explosion is considered.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0065017</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Convergence ; Cylindrical waves ; Dimensionless numbers ; Fluid dynamics ; Internal energy ; Perturbation ; Physics ; Shock waves ; Stability ; Symmetry ; Wave fronts</subject><ispartof>Physics of fluids (1994), 2021-09, Vol.33 (9)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-5cf2235ad782614ecc9a1a1a6deccf9346721975b6f13e73522af22492e1cc233</citedby><cites>FETCH-LOGICAL-c292t-5cf2235ad782614ecc9a1a1a6deccf9346721975b6f13e73522af22492e1cc233</cites><orcidid>0000-0003-0465-0396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Chefranov, Sergey G.</creatorcontrib><title>Instability of cumulation in converging cylindrical shock wave</title><title>Physics of fluids (1994)</title><description>The conditions of linear instability for a converging cylindrical shock wave in an arbitrary inviscid medium are obtained. The initial continuous cylindrical symmetry of the shock wave front is exchanged on a discrete symmetry that is determined by the most unstable small azimuthal dimensionless wave numbers 0 &lt; k &lt; k t h &lt; 1 of corrugation perturbations. Due to the long azimuthal wavelengths ( λ = 2 π R s 0 / k, R s 0—the radius of the shock wave) of perturbations, the shape of the resulting shock wave front is not changed significantly, but the corresponding restriction of the internal energy cumulation can be caused by the intensification of the rotation of the medium behind the front. The instability and the restriction of cumulation are also possible in the case of the exponential rapid growth of the one-dimensional perturbations with k = 0, when the shape of the shock front is not changed at all. The correspondence of present theory to the experimental and simulation data on underwater electrical explosion is considered.</description><subject>Convergence</subject><subject>Cylindrical waves</subject><subject>Dimensionless numbers</subject><subject>Fluid dynamics</subject><subject>Internal energy</subject><subject>Perturbation</subject><subject>Physics</subject><subject>Shock waves</subject><subject>Stability</subject><subject>Symmetry</subject><subject>Wave fronts</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsHv0HAk8LWZNIkzUWQ4p9CwYueQ5rN1tRtUpPdyn57t27PMof3Dr95wzyErimZUCLYPZ8QIjih8gSNKJmpQgohTg9ekkIIRs_RRc4bQghTIEboYRFyY1a-9k2HY4Vtu21r0_gYsA_YxrB3ae3DGtuu9qFM3poa589ov_CP2btLdFaZOruro47Rx_PT-_y1WL69LOaPy8KCgqbgtgJg3JRyBoJOnbXK0H5E2dtKsamQQJXkK1FR5iTjAKbfmCpw1FpgbIxuhtxdit-ty43exDaF_qQGLiWdKUahp24HyqaYc3KV3iW_NanTlOhDPZrrYz09ezew2frm7-F_4F8p5WOl</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Chefranov, Sergey G.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0465-0396</orcidid></search><sort><creationdate>202109</creationdate><title>Instability of cumulation in converging cylindrical shock wave</title><author>Chefranov, Sergey G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-5cf2235ad782614ecc9a1a1a6deccf9346721975b6f13e73522af22492e1cc233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Convergence</topic><topic>Cylindrical waves</topic><topic>Dimensionless numbers</topic><topic>Fluid dynamics</topic><topic>Internal energy</topic><topic>Perturbation</topic><topic>Physics</topic><topic>Shock waves</topic><topic>Stability</topic><topic>Symmetry</topic><topic>Wave fronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chefranov, Sergey G.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chefranov, Sergey G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instability of cumulation in converging cylindrical shock wave</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2021-09</date><risdate>2021</risdate><volume>33</volume><issue>9</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The conditions of linear instability for a converging cylindrical shock wave in an arbitrary inviscid medium are obtained. The initial continuous cylindrical symmetry of the shock wave front is exchanged on a discrete symmetry that is determined by the most unstable small azimuthal dimensionless wave numbers 0 &lt; k &lt; k t h &lt; 1 of corrugation perturbations. Due to the long azimuthal wavelengths ( λ = 2 π R s 0 / k, R s 0—the radius of the shock wave) of perturbations, the shape of the resulting shock wave front is not changed significantly, but the corresponding restriction of the internal energy cumulation can be caused by the intensification of the rotation of the medium behind the front. The instability and the restriction of cumulation are also possible in the case of the exponential rapid growth of the one-dimensional perturbations with k = 0, when the shape of the shock front is not changed at all. The correspondence of present theory to the experimental and simulation data on underwater electrical explosion is considered.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0065017</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0465-0396</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2021-09, Vol.33 (9)
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_5_0065017
source AIP Journals Complete; Alma/SFX Local Collection
subjects Convergence
Cylindrical waves
Dimensionless numbers
Fluid dynamics
Internal energy
Perturbation
Physics
Shock waves
Stability
Symmetry
Wave fronts
title Instability of cumulation in converging cylindrical shock wave
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instability%20of%20cumulation%20in%20converging%20cylindrical%20shock%20wave&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Chefranov,%20Sergey%20G.&rft.date=2021-09&rft.volume=33&rft.issue=9&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0065017&rft_dat=%3Cproquest_scita%3E2577189312%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2577189312&rft_id=info:pmid/&rfr_iscdi=true