Instability of cumulation in converging cylindrical shock wave
The conditions of linear instability for a converging cylindrical shock wave in an arbitrary inviscid medium are obtained. The initial continuous cylindrical symmetry of the shock wave front is exchanged on a discrete symmetry that is determined by the most unstable small azimuthal dimensionless wav...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2021-09, Vol.33 (9) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 33 |
creator | Chefranov, Sergey G. |
description | The conditions of linear instability for a converging cylindrical shock wave in an arbitrary inviscid medium are obtained. The initial continuous cylindrical symmetry of the shock wave front is exchanged on a discrete symmetry that is determined by the most unstable small azimuthal dimensionless wave numbers
0
<
k
<
k
t
h
<
1 of corrugation perturbations. Due to the long azimuthal wavelengths (
λ
=
2
π
R
s
0
/
k,
R
s
0—the radius of the shock wave) of perturbations, the shape of the resulting shock wave front is not changed significantly, but the corresponding restriction of the internal energy cumulation can be caused by the intensification of the rotation of the medium behind the front. The instability and the restriction of cumulation are also possible in the case of the exponential rapid growth of the one-dimensional perturbations with
k
=
0, when the shape of the shock front is not changed at all. The correspondence of present theory to the experimental and simulation data on underwater electrical explosion is considered. |
doi_str_mv | 10.1063/5.0065017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0065017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577189312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-5cf2235ad782614ecc9a1a1a6deccf9346721975b6f13e73522af22492e1cc233</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsHv0HAk8LWZNIkzUWQ4p9CwYueQ5rN1tRtUpPdyn57t27PMof3Dr95wzyErimZUCLYPZ8QIjih8gSNKJmpQgohTg9ekkIIRs_RRc4bQghTIEboYRFyY1a-9k2HY4Vtu21r0_gYsA_YxrB3ae3DGtuu9qFM3poa589ov_CP2btLdFaZOruro47Rx_PT-_y1WL69LOaPy8KCgqbgtgJg3JRyBoJOnbXK0H5E2dtKsamQQJXkK1FR5iTjAKbfmCpw1FpgbIxuhtxdit-ty43exDaF_qQGLiWdKUahp24HyqaYc3KV3iW_NanTlOhDPZrrYz09ezew2frm7-F_4F8p5WOl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577189312</pqid></control><display><type>article</type><title>Instability of cumulation in converging cylindrical shock wave</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Chefranov, Sergey G.</creator><creatorcontrib>Chefranov, Sergey G.</creatorcontrib><description>The conditions of linear instability for a converging cylindrical shock wave in an arbitrary inviscid medium are obtained. The initial continuous cylindrical symmetry of the shock wave front is exchanged on a discrete symmetry that is determined by the most unstable small azimuthal dimensionless wave numbers
0
<
k
<
k
t
h
<
1 of corrugation perturbations. Due to the long azimuthal wavelengths (
λ
=
2
π
R
s
0
/
k,
R
s
0—the radius of the shock wave) of perturbations, the shape of the resulting shock wave front is not changed significantly, but the corresponding restriction of the internal energy cumulation can be caused by the intensification of the rotation of the medium behind the front. The instability and the restriction of cumulation are also possible in the case of the exponential rapid growth of the one-dimensional perturbations with
k
=
0, when the shape of the shock front is not changed at all. The correspondence of present theory to the experimental and simulation data on underwater electrical explosion is considered.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0065017</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Convergence ; Cylindrical waves ; Dimensionless numbers ; Fluid dynamics ; Internal energy ; Perturbation ; Physics ; Shock waves ; Stability ; Symmetry ; Wave fronts</subject><ispartof>Physics of fluids (1994), 2021-09, Vol.33 (9)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-5cf2235ad782614ecc9a1a1a6deccf9346721975b6f13e73522af22492e1cc233</citedby><cites>FETCH-LOGICAL-c292t-5cf2235ad782614ecc9a1a1a6deccf9346721975b6f13e73522af22492e1cc233</cites><orcidid>0000-0003-0465-0396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Chefranov, Sergey G.</creatorcontrib><title>Instability of cumulation in converging cylindrical shock wave</title><title>Physics of fluids (1994)</title><description>The conditions of linear instability for a converging cylindrical shock wave in an arbitrary inviscid medium are obtained. The initial continuous cylindrical symmetry of the shock wave front is exchanged on a discrete symmetry that is determined by the most unstable small azimuthal dimensionless wave numbers
0
<
k
<
k
t
h
<
1 of corrugation perturbations. Due to the long azimuthal wavelengths (
λ
=
2
π
R
s
0
/
k,
R
s
0—the radius of the shock wave) of perturbations, the shape of the resulting shock wave front is not changed significantly, but the corresponding restriction of the internal energy cumulation can be caused by the intensification of the rotation of the medium behind the front. The instability and the restriction of cumulation are also possible in the case of the exponential rapid growth of the one-dimensional perturbations with
k
=
0, when the shape of the shock front is not changed at all. The correspondence of present theory to the experimental and simulation data on underwater electrical explosion is considered.</description><subject>Convergence</subject><subject>Cylindrical waves</subject><subject>Dimensionless numbers</subject><subject>Fluid dynamics</subject><subject>Internal energy</subject><subject>Perturbation</subject><subject>Physics</subject><subject>Shock waves</subject><subject>Stability</subject><subject>Symmetry</subject><subject>Wave fronts</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsHv0HAk8LWZNIkzUWQ4p9CwYueQ5rN1tRtUpPdyn57t27PMof3Dr95wzyErimZUCLYPZ8QIjih8gSNKJmpQgohTg9ekkIIRs_RRc4bQghTIEboYRFyY1a-9k2HY4Vtu21r0_gYsA_YxrB3ae3DGtuu9qFM3poa589ov_CP2btLdFaZOruro47Rx_PT-_y1WL69LOaPy8KCgqbgtgJg3JRyBoJOnbXK0H5E2dtKsamQQJXkK1FR5iTjAKbfmCpw1FpgbIxuhtxdit-ty43exDaF_qQGLiWdKUahp24HyqaYc3KV3iW_NanTlOhDPZrrYz09ezew2frm7-F_4F8p5WOl</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Chefranov, Sergey G.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0465-0396</orcidid></search><sort><creationdate>202109</creationdate><title>Instability of cumulation in converging cylindrical shock wave</title><author>Chefranov, Sergey G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-5cf2235ad782614ecc9a1a1a6deccf9346721975b6f13e73522af22492e1cc233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Convergence</topic><topic>Cylindrical waves</topic><topic>Dimensionless numbers</topic><topic>Fluid dynamics</topic><topic>Internal energy</topic><topic>Perturbation</topic><topic>Physics</topic><topic>Shock waves</topic><topic>Stability</topic><topic>Symmetry</topic><topic>Wave fronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chefranov, Sergey G.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chefranov, Sergey G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instability of cumulation in converging cylindrical shock wave</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2021-09</date><risdate>2021</risdate><volume>33</volume><issue>9</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The conditions of linear instability for a converging cylindrical shock wave in an arbitrary inviscid medium are obtained. The initial continuous cylindrical symmetry of the shock wave front is exchanged on a discrete symmetry that is determined by the most unstable small azimuthal dimensionless wave numbers
0
<
k
<
k
t
h
<
1 of corrugation perturbations. Due to the long azimuthal wavelengths (
λ
=
2
π
R
s
0
/
k,
R
s
0—the radius of the shock wave) of perturbations, the shape of the resulting shock wave front is not changed significantly, but the corresponding restriction of the internal energy cumulation can be caused by the intensification of the rotation of the medium behind the front. The instability and the restriction of cumulation are also possible in the case of the exponential rapid growth of the one-dimensional perturbations with
k
=
0, when the shape of the shock front is not changed at all. The correspondence of present theory to the experimental and simulation data on underwater electrical explosion is considered.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0065017</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0465-0396</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2021-09, Vol.33 (9) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0065017 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Convergence Cylindrical waves Dimensionless numbers Fluid dynamics Internal energy Perturbation Physics Shock waves Stability Symmetry Wave fronts |
title | Instability of cumulation in converging cylindrical shock wave |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instability%20of%20cumulation%20in%20converging%20cylindrical%20shock%20wave&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Chefranov,%20Sergey%20G.&rft.date=2021-09&rft.volume=33&rft.issue=9&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0065017&rft_dat=%3Cproquest_scita%3E2577189312%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2577189312&rft_id=info:pmid/&rfr_iscdi=true |