Thermal performance of diamond field-effect transistors

In this report, the thermal performance of a hydrogen (H)-terminated diamond field-effect transistor (FET) is investigated using Raman spectroscopy and electrothermal device modeling. First, the thermal conductivity (κdiamond) of the active diamond channel was determined by measuring the temperature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2021-10, Vol.119 (14)
Hauptverfasser: Lundh, James Spencer, Shoemaker, Daniel, Birdwell, A. Glen, Weil, James D., De La Cruz, Leonard M., Shah, Pankaj B., Crawford, Kevin G., Ivanov, Tony G., Wong, Hiu Yung, Choi, Sukwon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page
container_title Applied physics letters
container_volume 119
creator Lundh, James Spencer
Shoemaker, Daniel
Birdwell, A. Glen
Weil, James D.
De La Cruz, Leonard M.
Shah, Pankaj B.
Crawford, Kevin G.
Ivanov, Tony G.
Wong, Hiu Yung
Choi, Sukwon
description In this report, the thermal performance of a hydrogen (H)-terminated diamond field-effect transistor (FET) is investigated using Raman spectroscopy and electrothermal device modeling. First, the thermal conductivity (κdiamond) of the active diamond channel was determined by measuring the temperature rise of transmission line measurement structures under various heat flux conditions using nanoparticle-assisted Raman thermometry. Using this approach, κdiamond was estimated to be 1860 W/m K with a 95% confidence interval ranging from 1610 to 2120 W/m K. In conjunction with measured electrical output characteristics, this κ was used as an input parameter for an electrothermal device model of an H-terminated diamond FET. The simulated thermal response showed good agreement with surface temperature measurements acquired using nanoparticle-assisted Raman thermometry. These diamond-based structures were highly efficient at dissipating heat from the active device channel with measured device thermal resistances as low as ∼1 mm K/W. Using the calibrated electrothermal device model, the diamond FET was able to operate at a very high power density of 40 W/mm with a simulated temperature rise of ∼33 K. Finally, the thermal resistance of these lateral diamond FETs was compared to lateral transistor structures based on other ultrawide bandgap materials (Al0.70Ga0.30N, β-Ga2O3) and wide bandgap GaN for benchmarking. These results indicate that the thermal resistance of diamond-based lateral transistors can be up to ∼10× lower than GaN-based devices and ∼50× lower than other UWBG devices.
doi_str_mv 10.1063/5.0061948
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0061948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578905663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-cc5f28c9958ced98c8cb2313dc3fd899397e15ba0ea54c9717fc110e5294de0e3</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtbqwX-w4Elha2bTbJKjFL-g4KWeQzqZ4JZ2syap4L93pQXvnmYGHt6Bl7Fr4DPgrbiXM85bMHN9wibAlaoFgD5lE865qFsj4Zxd5LwZT9kIMWFq9UFp57bVQCnEceuRqhgq37ld7H0VOtr6mkIgLFVJrs9dLjHlS3YW3DbT1XFO2fvT42rxUi_fnl8XD8saRduUGlGGRqMxUiN5o1HjuhEgPIrgtTHCKAK5dpycnKNRoAICcJKNmXviJKbs5pA7pPi5p1zsJu5TP760jVTacNm2YlS3B4Up5pwo2CF1O5e-LXD724uV9tjLaO8ONmNXXOli_z_8FdMftIMP4geEQ3Bw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578905663</pqid></control><display><type>article</type><title>Thermal performance of diamond field-effect transistors</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Lundh, James Spencer ; Shoemaker, Daniel ; Birdwell, A. Glen ; Weil, James D. ; De La Cruz, Leonard M. ; Shah, Pankaj B. ; Crawford, Kevin G. ; Ivanov, Tony G. ; Wong, Hiu Yung ; Choi, Sukwon</creator><creatorcontrib>Lundh, James Spencer ; Shoemaker, Daniel ; Birdwell, A. Glen ; Weil, James D. ; De La Cruz, Leonard M. ; Shah, Pankaj B. ; Crawford, Kevin G. ; Ivanov, Tony G. ; Wong, Hiu Yung ; Choi, Sukwon</creatorcontrib><description>In this report, the thermal performance of a hydrogen (H)-terminated diamond field-effect transistor (FET) is investigated using Raman spectroscopy and electrothermal device modeling. First, the thermal conductivity (κdiamond) of the active diamond channel was determined by measuring the temperature rise of transmission line measurement structures under various heat flux conditions using nanoparticle-assisted Raman thermometry. Using this approach, κdiamond was estimated to be 1860 W/m K with a 95% confidence interval ranging from 1610 to 2120 W/m K. In conjunction with measured electrical output characteristics, this κ was used as an input parameter for an electrothermal device model of an H-terminated diamond FET. The simulated thermal response showed good agreement with surface temperature measurements acquired using nanoparticle-assisted Raman thermometry. These diamond-based structures were highly efficient at dissipating heat from the active device channel with measured device thermal resistances as low as ∼1 mm K/W. Using the calibrated electrothermal device model, the diamond FET was able to operate at a very high power density of 40 W/mm with a simulated temperature rise of ∼33 K. Finally, the thermal resistance of these lateral diamond FETs was compared to lateral transistor structures based on other ultrawide bandgap materials (Al0.70Ga0.30N, β-Ga2O3) and wide bandgap GaN for benchmarking. These results indicate that the thermal resistance of diamond-based lateral transistors can be up to ∼10× lower than GaN-based devices and ∼50× lower than other UWBG devices.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0061948</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Confidence intervals ; Diamonds ; Energy gap ; Field effect transistors ; Gallium nitrides ; Gallium oxides ; Heat flux ; Heat transfer ; Nanoparticles ; Raman spectroscopy ; Semiconductor devices ; Temperature ; Thermal conductivity ; Thermal resistance ; Thermal response ; Thermal simulation ; Transistors ; Transmission lines</subject><ispartof>Applied physics letters, 2021-10, Vol.119 (14)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-cc5f28c9958ced98c8cb2313dc3fd899397e15ba0ea54c9717fc110e5294de0e3</citedby><cites>FETCH-LOGICAL-c362t-cc5f28c9958ced98c8cb2313dc3fd899397e15ba0ea54c9717fc110e5294de0e3</cites><orcidid>0000-0001-8859-930X ; 0000-0001-8125-4587 ; 0000-0002-3664-1542 ; 0000-0003-0135-7469 ; 0000-0002-7159-3363</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0061948$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27903,27904,76130</link.rule.ids></links><search><creatorcontrib>Lundh, James Spencer</creatorcontrib><creatorcontrib>Shoemaker, Daniel</creatorcontrib><creatorcontrib>Birdwell, A. Glen</creatorcontrib><creatorcontrib>Weil, James D.</creatorcontrib><creatorcontrib>De La Cruz, Leonard M.</creatorcontrib><creatorcontrib>Shah, Pankaj B.</creatorcontrib><creatorcontrib>Crawford, Kevin G.</creatorcontrib><creatorcontrib>Ivanov, Tony G.</creatorcontrib><creatorcontrib>Wong, Hiu Yung</creatorcontrib><creatorcontrib>Choi, Sukwon</creatorcontrib><title>Thermal performance of diamond field-effect transistors</title><title>Applied physics letters</title><description>In this report, the thermal performance of a hydrogen (H)-terminated diamond field-effect transistor (FET) is investigated using Raman spectroscopy and electrothermal device modeling. First, the thermal conductivity (κdiamond) of the active diamond channel was determined by measuring the temperature rise of transmission line measurement structures under various heat flux conditions using nanoparticle-assisted Raman thermometry. Using this approach, κdiamond was estimated to be 1860 W/m K with a 95% confidence interval ranging from 1610 to 2120 W/m K. In conjunction with measured electrical output characteristics, this κ was used as an input parameter for an electrothermal device model of an H-terminated diamond FET. The simulated thermal response showed good agreement with surface temperature measurements acquired using nanoparticle-assisted Raman thermometry. These diamond-based structures were highly efficient at dissipating heat from the active device channel with measured device thermal resistances as low as ∼1 mm K/W. Using the calibrated electrothermal device model, the diamond FET was able to operate at a very high power density of 40 W/mm with a simulated temperature rise of ∼33 K. Finally, the thermal resistance of these lateral diamond FETs was compared to lateral transistor structures based on other ultrawide bandgap materials (Al0.70Ga0.30N, β-Ga2O3) and wide bandgap GaN for benchmarking. These results indicate that the thermal resistance of diamond-based lateral transistors can be up to ∼10× lower than GaN-based devices and ∼50× lower than other UWBG devices.</description><subject>Applied physics</subject><subject>Confidence intervals</subject><subject>Diamonds</subject><subject>Energy gap</subject><subject>Field effect transistors</subject><subject>Gallium nitrides</subject><subject>Gallium oxides</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Nanoparticles</subject><subject>Raman spectroscopy</subject><subject>Semiconductor devices</subject><subject>Temperature</subject><subject>Thermal conductivity</subject><subject>Thermal resistance</subject><subject>Thermal response</subject><subject>Thermal simulation</subject><subject>Transistors</subject><subject>Transmission lines</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtbqwX-w4Elha2bTbJKjFL-g4KWeQzqZ4JZ2syap4L93pQXvnmYGHt6Bl7Fr4DPgrbiXM85bMHN9wibAlaoFgD5lE865qFsj4Zxd5LwZT9kIMWFq9UFp57bVQCnEceuRqhgq37ld7H0VOtr6mkIgLFVJrs9dLjHlS3YW3DbT1XFO2fvT42rxUi_fnl8XD8saRduUGlGGRqMxUiN5o1HjuhEgPIrgtTHCKAK5dpycnKNRoAICcJKNmXviJKbs5pA7pPi5p1zsJu5TP760jVTacNm2YlS3B4Up5pwo2CF1O5e-LXD724uV9tjLaO8ONmNXXOli_z_8FdMftIMP4geEQ3Bw</recordid><startdate>20211004</startdate><enddate>20211004</enddate><creator>Lundh, James Spencer</creator><creator>Shoemaker, Daniel</creator><creator>Birdwell, A. Glen</creator><creator>Weil, James D.</creator><creator>De La Cruz, Leonard M.</creator><creator>Shah, Pankaj B.</creator><creator>Crawford, Kevin G.</creator><creator>Ivanov, Tony G.</creator><creator>Wong, Hiu Yung</creator><creator>Choi, Sukwon</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8859-930X</orcidid><orcidid>https://orcid.org/0000-0001-8125-4587</orcidid><orcidid>https://orcid.org/0000-0002-3664-1542</orcidid><orcidid>https://orcid.org/0000-0003-0135-7469</orcidid><orcidid>https://orcid.org/0000-0002-7159-3363</orcidid></search><sort><creationdate>20211004</creationdate><title>Thermal performance of diamond field-effect transistors</title><author>Lundh, James Spencer ; Shoemaker, Daniel ; Birdwell, A. Glen ; Weil, James D. ; De La Cruz, Leonard M. ; Shah, Pankaj B. ; Crawford, Kevin G. ; Ivanov, Tony G. ; Wong, Hiu Yung ; Choi, Sukwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-cc5f28c9958ced98c8cb2313dc3fd899397e15ba0ea54c9717fc110e5294de0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Confidence intervals</topic><topic>Diamonds</topic><topic>Energy gap</topic><topic>Field effect transistors</topic><topic>Gallium nitrides</topic><topic>Gallium oxides</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Nanoparticles</topic><topic>Raman spectroscopy</topic><topic>Semiconductor devices</topic><topic>Temperature</topic><topic>Thermal conductivity</topic><topic>Thermal resistance</topic><topic>Thermal response</topic><topic>Thermal simulation</topic><topic>Transistors</topic><topic>Transmission lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lundh, James Spencer</creatorcontrib><creatorcontrib>Shoemaker, Daniel</creatorcontrib><creatorcontrib>Birdwell, A. Glen</creatorcontrib><creatorcontrib>Weil, James D.</creatorcontrib><creatorcontrib>De La Cruz, Leonard M.</creatorcontrib><creatorcontrib>Shah, Pankaj B.</creatorcontrib><creatorcontrib>Crawford, Kevin G.</creatorcontrib><creatorcontrib>Ivanov, Tony G.</creatorcontrib><creatorcontrib>Wong, Hiu Yung</creatorcontrib><creatorcontrib>Choi, Sukwon</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lundh, James Spencer</au><au>Shoemaker, Daniel</au><au>Birdwell, A. Glen</au><au>Weil, James D.</au><au>De La Cruz, Leonard M.</au><au>Shah, Pankaj B.</au><au>Crawford, Kevin G.</au><au>Ivanov, Tony G.</au><au>Wong, Hiu Yung</au><au>Choi, Sukwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal performance of diamond field-effect transistors</atitle><jtitle>Applied physics letters</jtitle><date>2021-10-04</date><risdate>2021</risdate><volume>119</volume><issue>14</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>In this report, the thermal performance of a hydrogen (H)-terminated diamond field-effect transistor (FET) is investigated using Raman spectroscopy and electrothermal device modeling. First, the thermal conductivity (κdiamond) of the active diamond channel was determined by measuring the temperature rise of transmission line measurement structures under various heat flux conditions using nanoparticle-assisted Raman thermometry. Using this approach, κdiamond was estimated to be 1860 W/m K with a 95% confidence interval ranging from 1610 to 2120 W/m K. In conjunction with measured electrical output characteristics, this κ was used as an input parameter for an electrothermal device model of an H-terminated diamond FET. The simulated thermal response showed good agreement with surface temperature measurements acquired using nanoparticle-assisted Raman thermometry. These diamond-based structures were highly efficient at dissipating heat from the active device channel with measured device thermal resistances as low as ∼1 mm K/W. Using the calibrated electrothermal device model, the diamond FET was able to operate at a very high power density of 40 W/mm with a simulated temperature rise of ∼33 K. Finally, the thermal resistance of these lateral diamond FETs was compared to lateral transistor structures based on other ultrawide bandgap materials (Al0.70Ga0.30N, β-Ga2O3) and wide bandgap GaN for benchmarking. These results indicate that the thermal resistance of diamond-based lateral transistors can be up to ∼10× lower than GaN-based devices and ∼50× lower than other UWBG devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0061948</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8859-930X</orcidid><orcidid>https://orcid.org/0000-0001-8125-4587</orcidid><orcidid>https://orcid.org/0000-0002-3664-1542</orcidid><orcidid>https://orcid.org/0000-0003-0135-7469</orcidid><orcidid>https://orcid.org/0000-0002-7159-3363</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2021-10, Vol.119 (14)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_5_0061948
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Confidence intervals
Diamonds
Energy gap
Field effect transistors
Gallium nitrides
Gallium oxides
Heat flux
Heat transfer
Nanoparticles
Raman spectroscopy
Semiconductor devices
Temperature
Thermal conductivity
Thermal resistance
Thermal response
Thermal simulation
Transistors
Transmission lines
title Thermal performance of diamond field-effect transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A50%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20performance%20of%20diamond%20field-effect%20transistors&rft.jtitle=Applied%20physics%20letters&rft.au=Lundh,%20James%20Spencer&rft.date=2021-10-04&rft.volume=119&rft.issue=14&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0061948&rft_dat=%3Cproquest_scita%3E2578905663%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578905663&rft_id=info:pmid/&rfr_iscdi=true