Thermal performance of diamond field-effect transistors
In this report, the thermal performance of a hydrogen (H)-terminated diamond field-effect transistor (FET) is investigated using Raman spectroscopy and electrothermal device modeling. First, the thermal conductivity (κdiamond) of the active diamond channel was determined by measuring the temperature...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2021-10, Vol.119 (14) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 14 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 119 |
creator | Lundh, James Spencer Shoemaker, Daniel Birdwell, A. Glen Weil, James D. De La Cruz, Leonard M. Shah, Pankaj B. Crawford, Kevin G. Ivanov, Tony G. Wong, Hiu Yung Choi, Sukwon |
description | In this report, the thermal performance of a hydrogen (H)-terminated diamond field-effect transistor (FET) is investigated using Raman spectroscopy and electrothermal device modeling. First, the thermal conductivity (κdiamond) of the active diamond channel was determined by measuring the temperature rise of transmission line measurement structures under various heat flux conditions using nanoparticle-assisted Raman thermometry. Using this approach, κdiamond was estimated to be 1860 W/m K with a 95% confidence interval ranging from 1610 to 2120 W/m K. In conjunction with measured electrical output characteristics, this κ was used as an input parameter for an electrothermal device model of an H-terminated diamond FET. The simulated thermal response showed good agreement with surface temperature measurements acquired using nanoparticle-assisted Raman thermometry. These diamond-based structures were highly efficient at dissipating heat from the active device channel with measured device thermal resistances as low as ∼1 mm K/W. Using the calibrated electrothermal device model, the diamond FET was able to operate at a very high power density of 40 W/mm with a simulated temperature rise of ∼33 K. Finally, the thermal resistance of these lateral diamond FETs was compared to lateral transistor structures based on other ultrawide bandgap materials (Al0.70Ga0.30N, β-Ga2O3) and wide bandgap GaN for benchmarking. These results indicate that the thermal resistance of diamond-based lateral transistors can be up to ∼10× lower than GaN-based devices and ∼50× lower than other UWBG devices. |
doi_str_mv | 10.1063/5.0061948 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0061948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578905663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-cc5f28c9958ced98c8cb2313dc3fd899397e15ba0ea54c9717fc110e5294de0e3</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtbqwX-w4Elha2bTbJKjFL-g4KWeQzqZ4JZ2syap4L93pQXvnmYGHt6Bl7Fr4DPgrbiXM85bMHN9wibAlaoFgD5lE865qFsj4Zxd5LwZT9kIMWFq9UFp57bVQCnEceuRqhgq37ld7H0VOtr6mkIgLFVJrs9dLjHlS3YW3DbT1XFO2fvT42rxUi_fnl8XD8saRduUGlGGRqMxUiN5o1HjuhEgPIrgtTHCKAK5dpycnKNRoAICcJKNmXviJKbs5pA7pPi5p1zsJu5TP760jVTacNm2YlS3B4Up5pwo2CF1O5e-LXD724uV9tjLaO8ONmNXXOli_z_8FdMftIMP4geEQ3Bw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578905663</pqid></control><display><type>article</type><title>Thermal performance of diamond field-effect transistors</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Lundh, James Spencer ; Shoemaker, Daniel ; Birdwell, A. Glen ; Weil, James D. ; De La Cruz, Leonard M. ; Shah, Pankaj B. ; Crawford, Kevin G. ; Ivanov, Tony G. ; Wong, Hiu Yung ; Choi, Sukwon</creator><creatorcontrib>Lundh, James Spencer ; Shoemaker, Daniel ; Birdwell, A. Glen ; Weil, James D. ; De La Cruz, Leonard M. ; Shah, Pankaj B. ; Crawford, Kevin G. ; Ivanov, Tony G. ; Wong, Hiu Yung ; Choi, Sukwon</creatorcontrib><description>In this report, the thermal performance of a hydrogen (H)-terminated diamond field-effect transistor (FET) is investigated using Raman spectroscopy and electrothermal device modeling. First, the thermal conductivity (κdiamond) of the active diamond channel was determined by measuring the temperature rise of transmission line measurement structures under various heat flux conditions using nanoparticle-assisted Raman thermometry. Using this approach, κdiamond was estimated to be 1860 W/m K with a 95% confidence interval ranging from 1610 to 2120 W/m K. In conjunction with measured electrical output characteristics, this κ was used as an input parameter for an electrothermal device model of an H-terminated diamond FET. The simulated thermal response showed good agreement with surface temperature measurements acquired using nanoparticle-assisted Raman thermometry. These diamond-based structures were highly efficient at dissipating heat from the active device channel with measured device thermal resistances as low as ∼1 mm K/W. Using the calibrated electrothermal device model, the diamond FET was able to operate at a very high power density of 40 W/mm with a simulated temperature rise of ∼33 K. Finally, the thermal resistance of these lateral diamond FETs was compared to lateral transistor structures based on other ultrawide bandgap materials (Al0.70Ga0.30N, β-Ga2O3) and wide bandgap GaN for benchmarking. These results indicate that the thermal resistance of diamond-based lateral transistors can be up to ∼10× lower than GaN-based devices and ∼50× lower than other UWBG devices.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0061948</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Confidence intervals ; Diamonds ; Energy gap ; Field effect transistors ; Gallium nitrides ; Gallium oxides ; Heat flux ; Heat transfer ; Nanoparticles ; Raman spectroscopy ; Semiconductor devices ; Temperature ; Thermal conductivity ; Thermal resistance ; Thermal response ; Thermal simulation ; Transistors ; Transmission lines</subject><ispartof>Applied physics letters, 2021-10, Vol.119 (14)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-cc5f28c9958ced98c8cb2313dc3fd899397e15ba0ea54c9717fc110e5294de0e3</citedby><cites>FETCH-LOGICAL-c362t-cc5f28c9958ced98c8cb2313dc3fd899397e15ba0ea54c9717fc110e5294de0e3</cites><orcidid>0000-0001-8859-930X ; 0000-0001-8125-4587 ; 0000-0002-3664-1542 ; 0000-0003-0135-7469 ; 0000-0002-7159-3363</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0061948$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27903,27904,76130</link.rule.ids></links><search><creatorcontrib>Lundh, James Spencer</creatorcontrib><creatorcontrib>Shoemaker, Daniel</creatorcontrib><creatorcontrib>Birdwell, A. Glen</creatorcontrib><creatorcontrib>Weil, James D.</creatorcontrib><creatorcontrib>De La Cruz, Leonard M.</creatorcontrib><creatorcontrib>Shah, Pankaj B.</creatorcontrib><creatorcontrib>Crawford, Kevin G.</creatorcontrib><creatorcontrib>Ivanov, Tony G.</creatorcontrib><creatorcontrib>Wong, Hiu Yung</creatorcontrib><creatorcontrib>Choi, Sukwon</creatorcontrib><title>Thermal performance of diamond field-effect transistors</title><title>Applied physics letters</title><description>In this report, the thermal performance of a hydrogen (H)-terminated diamond field-effect transistor (FET) is investigated using Raman spectroscopy and electrothermal device modeling. First, the thermal conductivity (κdiamond) of the active diamond channel was determined by measuring the temperature rise of transmission line measurement structures under various heat flux conditions using nanoparticle-assisted Raman thermometry. Using this approach, κdiamond was estimated to be 1860 W/m K with a 95% confidence interval ranging from 1610 to 2120 W/m K. In conjunction with measured electrical output characteristics, this κ was used as an input parameter for an electrothermal device model of an H-terminated diamond FET. The simulated thermal response showed good agreement with surface temperature measurements acquired using nanoparticle-assisted Raman thermometry. These diamond-based structures were highly efficient at dissipating heat from the active device channel with measured device thermal resistances as low as ∼1 mm K/W. Using the calibrated electrothermal device model, the diamond FET was able to operate at a very high power density of 40 W/mm with a simulated temperature rise of ∼33 K. Finally, the thermal resistance of these lateral diamond FETs was compared to lateral transistor structures based on other ultrawide bandgap materials (Al0.70Ga0.30N, β-Ga2O3) and wide bandgap GaN for benchmarking. These results indicate that the thermal resistance of diamond-based lateral transistors can be up to ∼10× lower than GaN-based devices and ∼50× lower than other UWBG devices.</description><subject>Applied physics</subject><subject>Confidence intervals</subject><subject>Diamonds</subject><subject>Energy gap</subject><subject>Field effect transistors</subject><subject>Gallium nitrides</subject><subject>Gallium oxides</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Nanoparticles</subject><subject>Raman spectroscopy</subject><subject>Semiconductor devices</subject><subject>Temperature</subject><subject>Thermal conductivity</subject><subject>Thermal resistance</subject><subject>Thermal response</subject><subject>Thermal simulation</subject><subject>Transistors</subject><subject>Transmission lines</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtbqwX-w4Elha2bTbJKjFL-g4KWeQzqZ4JZ2syap4L93pQXvnmYGHt6Bl7Fr4DPgrbiXM85bMHN9wibAlaoFgD5lE865qFsj4Zxd5LwZT9kIMWFq9UFp57bVQCnEceuRqhgq37ld7H0VOtr6mkIgLFVJrs9dLjHlS3YW3DbT1XFO2fvT42rxUi_fnl8XD8saRduUGlGGRqMxUiN5o1HjuhEgPIrgtTHCKAK5dpycnKNRoAICcJKNmXviJKbs5pA7pPi5p1zsJu5TP760jVTacNm2YlS3B4Up5pwo2CF1O5e-LXD724uV9tjLaO8ONmNXXOli_z_8FdMftIMP4geEQ3Bw</recordid><startdate>20211004</startdate><enddate>20211004</enddate><creator>Lundh, James Spencer</creator><creator>Shoemaker, Daniel</creator><creator>Birdwell, A. Glen</creator><creator>Weil, James D.</creator><creator>De La Cruz, Leonard M.</creator><creator>Shah, Pankaj B.</creator><creator>Crawford, Kevin G.</creator><creator>Ivanov, Tony G.</creator><creator>Wong, Hiu Yung</creator><creator>Choi, Sukwon</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8859-930X</orcidid><orcidid>https://orcid.org/0000-0001-8125-4587</orcidid><orcidid>https://orcid.org/0000-0002-3664-1542</orcidid><orcidid>https://orcid.org/0000-0003-0135-7469</orcidid><orcidid>https://orcid.org/0000-0002-7159-3363</orcidid></search><sort><creationdate>20211004</creationdate><title>Thermal performance of diamond field-effect transistors</title><author>Lundh, James Spencer ; Shoemaker, Daniel ; Birdwell, A. Glen ; Weil, James D. ; De La Cruz, Leonard M. ; Shah, Pankaj B. ; Crawford, Kevin G. ; Ivanov, Tony G. ; Wong, Hiu Yung ; Choi, Sukwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-cc5f28c9958ced98c8cb2313dc3fd899397e15ba0ea54c9717fc110e5294de0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Confidence intervals</topic><topic>Diamonds</topic><topic>Energy gap</topic><topic>Field effect transistors</topic><topic>Gallium nitrides</topic><topic>Gallium oxides</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Nanoparticles</topic><topic>Raman spectroscopy</topic><topic>Semiconductor devices</topic><topic>Temperature</topic><topic>Thermal conductivity</topic><topic>Thermal resistance</topic><topic>Thermal response</topic><topic>Thermal simulation</topic><topic>Transistors</topic><topic>Transmission lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lundh, James Spencer</creatorcontrib><creatorcontrib>Shoemaker, Daniel</creatorcontrib><creatorcontrib>Birdwell, A. Glen</creatorcontrib><creatorcontrib>Weil, James D.</creatorcontrib><creatorcontrib>De La Cruz, Leonard M.</creatorcontrib><creatorcontrib>Shah, Pankaj B.</creatorcontrib><creatorcontrib>Crawford, Kevin G.</creatorcontrib><creatorcontrib>Ivanov, Tony G.</creatorcontrib><creatorcontrib>Wong, Hiu Yung</creatorcontrib><creatorcontrib>Choi, Sukwon</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lundh, James Spencer</au><au>Shoemaker, Daniel</au><au>Birdwell, A. Glen</au><au>Weil, James D.</au><au>De La Cruz, Leonard M.</au><au>Shah, Pankaj B.</au><au>Crawford, Kevin G.</au><au>Ivanov, Tony G.</au><au>Wong, Hiu Yung</au><au>Choi, Sukwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal performance of diamond field-effect transistors</atitle><jtitle>Applied physics letters</jtitle><date>2021-10-04</date><risdate>2021</risdate><volume>119</volume><issue>14</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>In this report, the thermal performance of a hydrogen (H)-terminated diamond field-effect transistor (FET) is investigated using Raman spectroscopy and electrothermal device modeling. First, the thermal conductivity (κdiamond) of the active diamond channel was determined by measuring the temperature rise of transmission line measurement structures under various heat flux conditions using nanoparticle-assisted Raman thermometry. Using this approach, κdiamond was estimated to be 1860 W/m K with a 95% confidence interval ranging from 1610 to 2120 W/m K. In conjunction with measured electrical output characteristics, this κ was used as an input parameter for an electrothermal device model of an H-terminated diamond FET. The simulated thermal response showed good agreement with surface temperature measurements acquired using nanoparticle-assisted Raman thermometry. These diamond-based structures were highly efficient at dissipating heat from the active device channel with measured device thermal resistances as low as ∼1 mm K/W. Using the calibrated electrothermal device model, the diamond FET was able to operate at a very high power density of 40 W/mm with a simulated temperature rise of ∼33 K. Finally, the thermal resistance of these lateral diamond FETs was compared to lateral transistor structures based on other ultrawide bandgap materials (Al0.70Ga0.30N, β-Ga2O3) and wide bandgap GaN for benchmarking. These results indicate that the thermal resistance of diamond-based lateral transistors can be up to ∼10× lower than GaN-based devices and ∼50× lower than other UWBG devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0061948</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8859-930X</orcidid><orcidid>https://orcid.org/0000-0001-8125-4587</orcidid><orcidid>https://orcid.org/0000-0002-3664-1542</orcidid><orcidid>https://orcid.org/0000-0003-0135-7469</orcidid><orcidid>https://orcid.org/0000-0002-7159-3363</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2021-10, Vol.119 (14) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0061948 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Confidence intervals Diamonds Energy gap Field effect transistors Gallium nitrides Gallium oxides Heat flux Heat transfer Nanoparticles Raman spectroscopy Semiconductor devices Temperature Thermal conductivity Thermal resistance Thermal response Thermal simulation Transistors Transmission lines |
title | Thermal performance of diamond field-effect transistors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A50%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20performance%20of%20diamond%20field-effect%20transistors&rft.jtitle=Applied%20physics%20letters&rft.au=Lundh,%20James%20Spencer&rft.date=2021-10-04&rft.volume=119&rft.issue=14&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0061948&rft_dat=%3Cproquest_scita%3E2578905663%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578905663&rft_id=info:pmid/&rfr_iscdi=true |